Introduction to the analysis of Cherenkov Telescope data From raw data to shower images

> Marcos López Univ. Complutense Madrid

Outline

Remainder: What do we see with a CT?

- I. Processing of the pixel signals & Calibration
- II. Extraction of the shower Image & Parameterization
- III. Characterization of the event
 - Incoming direction
 - Gamma or hadron ?
 - Energy estimation

Lo più importante che dovresti avete imparato fino adesso su i telescopi Cherenkov

Typical question of visitors to MAGIC site: "with such a big telescope you have to SEE large nice pictures of planets/stars/galaxies"

Typical question of visitors to MAGIC site: "with such a big telescope you have to SEE nice pictures of planets/stars/galaxies"

No, conversely to optical telescopes we do NOT SEE stars. We RECORD NUCLEAR reactions in the atmosphere, in particular the flashes of Cherekov light which accompany them.

Cherenkov Technique Basic fact: γ-rays absorbed in atmosphere

Satellites

- Direct detection
- No background
- Small Effective Area ~1m²

Ground Detectors

- Indirect detection
- Huge Effective Area ~ 10⁵m²
- Enormous hadronic background

So, we see atmospheric showers.

- Comparing the number of showers coming from one position of the sky with respect to the bg. we <u>sometimes</u> see an excess of events
- Then we <u>assume</u> this excess as Gammas coming from the source
- And finally we <u>infer</u> properties about the source
- The nice thing is that this <u>indirect</u> way of doing gamma-ray astronomy works!

→ The cherenkov technique works

E [GeV]

Steps of the Analysis of CT data

I. Processing pixel signals & Calibration

Pixel signal extraction

<u>Raw Signal</u> = pedestal + (Cherenkov light) x PDE x gain

Mera-Tev, Merate 4-6 Oct 2011

Calibration

Pixel signal extraction

For each pixel we get:

- integrated charge Q (FADC counts)
- arrival time T (ns)

Then we get a raw image of the shower.

Calibration

Needed to:

- Convert charges from FADC counts to ph.e. (or photons)
- Correct for the differences between pixels:
 - Different Photo Detection Efficiency & gains -> calibrate Q
 - Different cable lenghts and transit time in pmt's -> calibrete T

Method:

- Take calibration runs. Camara iluminated with Uniform light flashes (Flat fielding)
- Muons signal

Calibration

II. Extraction of the shower Image & Parameterization

Image Cleaning

Goal: Keep only pixels iluminated by the shower, i.e. remove pixels due to NSB

Depending on the Cleaning Levels more or less pixels survive.

A compromise is needed to retain as many shower pixels as possible but as less as possible NSB pixels

Image Parameterization

<u>Input:</u>

- List of used pixels (after cleaning)Signal in each pixel
- pulse time of each pixel

<u>Output</u>

- Image quality : Number of Islands, leakage...
- Hillas parameters: Width, Length...
- **Extra Hillas parameters:** Concentration, asymmetry...
- Source dependent parameters: Disp, alpha...
- **Time parameters:** time gradient, time RMS...
- Stereo parameters: height of shower max, impact point...

Hillas parameters

Idea: Images of gamma showers have an oval shape. They can be described by an ellipse, defined by:

Size (or Sum): *Σ* pixel signal

Centroid: Coordinate of the center of gravity (x,y)

Main Axis (δ angle):

Line minimizing signal-weighed sum of squared pixel distance.
Angle of the 2nd moment matrix diagonalization.

Length: Signal RMS along main axis

Width: Signal RMS perpendicular to the main axis Mera-Tev, Merate 4-6 Oct 2011

Image quality parameters

Number of island

- Number of separated groups of pixel
- Can characterize the quality of the cleaning

Leakage

- Fraction of signal in the last pixel ring of the camera.
- Characterize how the image leaks outside of the camera

Number of pixels

- Number of core pixels
- Number of inner pixels

Source dependent parameters

Mainly used only for single telescope analysis

ALPHA:

Angle between the main axis and the centroid-source line.

DIST (DISP):

Distance between the centroid and source position

<u>MISS</u>

Distance between the main axis and the source position

Azimuthal-Width:

Image width relative to the axis source-centroid

Extra Hillas parameters

Concentration (x):

 Fraction of the signal in x largest pixels

Asymmetry:

- Distance between centroid and highest pixel
- 3rd moments of the signal distribution

Hillas parameters of the main island:

And many others...

Image cleaning: Timing information

To decrease the cleaning levels, can additionally use the arrival time of photons in the camera

Stereo observations: 3D param.

Multi-telescope parameters

Hillas parameters

- Mean Scale Width
- Mean Scale Length
- etc.

Event quality

- No. of triggering tel.
- No. of clean images.

Time parameters
 time tel trigger RMS

Characterization of the event

Characterization of the event

Once we have obtained the shower image, the next step is to obtain the characteristics of the primary particle which originated the shower

Primary Direction:

- DISP method (1 telescope)
- Stereoscopic reconstruction (2 telescopes)
- 3D model analysis (n telescopes)

Primary Energy:

- Size vs Impact parameter model (1 telescope)
- Multi-parameters table or Random Forest (1 telescope)
- 3D model (n telescopes)

Background rejection:

- Cuts on the image and shower parameters
- Classification using a Random Forest

Reconstruction of the incoming direction

DISP method: Developed for single telescope data

Possible confusion with symmetric direction Image asymmetry and time gradient help the distinction

Mera-Tev, Merate 4-6 Oct 2011

DISP can be determined with:

- A parameterization:

 $DISP = A(SIZE) + B(SIZE) \cdot \frac{WIDTH}{LENGTH + \eta(SIZE) \cdot LEAKAGE2}$

- Optimized decision trees (Random Forest)

All methods are based on Monte Carlo Simulation

Reconstruction of the incoming direction

Geometrical reconstruction: for more than 1 telescope

Mont Carlo independent

Reconstruction of the incoming direction

Final reconstructed direction

Input:

- One direction per telescope with DISP method
- One direction per telescope pair by stereoscopy
 - Waited average according
 - Image quality
 - Size
 - Angle between image axes

Output:

- The final primary direction
- Compatibility between the different results

Energy reconstruction

Basic fact: Energy ~ Image size

<u>Methods:</u>

A parameterization:
Energy = f(size, impact, zenith,...)

Look-up tables

Optimized decision trees (Random Forest)

All methods are based on Monte Carlo Simulation

Energy reconstruction

Energy resolution: 20% at 100 GeV, down to 15% around 1 TeV

Cosmic-ray background

Only air showers produce so rapid light flash But not only gamma-rays produce air showers !

Cosmic rays are composed of:

- Protons (main background)
- Heavy hadrons (Z>2) (easily rejected)
- Electrons (problem at low energy)
- Secondary muons (rejected by coincidence trigger)
- diffuse gamma-rays (No way !)
- neutrinos and other WIMPS (No problem)

Different kind of primary particles produce different kind of images in the camera

Different kind of primary particles produce different kind of images in the camera

Different distributions of Hillas parameters

Width

40

Length

Height of Shower maximum

42

Methods:

Super Cuts: Cuts on image or/and shower parameters

Parameters change with Energy --> so the cuts

Methods:

Super Cuts: Cuts on image or/and shower parameters

Random Forest:
Optimized decision trees

Other ? (Likelihood fit goodness of an analytic model)

Random Forests

A random forest is a numerical tool
Ingredients:

- MC Train samples of both species (Gammas & hadrons)
- Parameters to be used
- Statistical settings: #trees, #trials, final nodesize
- Advantages:
 - Fast calculation (compared to other classification methods)
 - Very good separation
 - Offers energy dependent cuts

The method implemented by MAGIC

Random Forests

Who it works: The growing of a tree

Space parameter divided into hypercubes

Each division done choosing randomly an Image parameter

Algorithm ends when in each final node there is only one kind of event (gamma or hadron) Mera-Tev, Merate 4-6 Oct 2011

Random Forests

Finally, one applies a cut in the HADRONNESS. Cut depends on the desired gamma purity of the sample and changes with energy

Model analysis: A Global reconstruction method

An alternative to the use of image parameterization

Analytic model (based on MC) gives the expected signal in each pixels as a function of E, Direction & Impact

A fit of the MC templates on the real data reconstructs at same time the E, direction, and nature (gamma/hadron)

This method developed then by HESS is time controvides the best result telescope arrays).

Last word: Systematic Effects

Every step has its own uncertainties which propagates up to the final physical results

- Calibration (absolute PMT QE, mirror aging, ...)
- MC Simulations (atmospheric model, trigger, ...)
- Background estimation (camera inhomogeneity, …)
- Whether condition (Calima, high clouds,...)
- Night sky light (Bright stars, Moon light, ...)
- Telescopes condition (dead pixels, misspointing, ...)
- Analyzer choices (cut optimizations, binning, …)

Generally, IACTs claim 20% systematics

That's all. Thanks for your attention