Absorption of γ -rays

Fabrizio Tavecchio

INAF-Oss. Astron. di Brera, Italy

Mera-TeV

Absorption of gamma rays

$\gamma + \gamma - \rightarrow e + + e -$

In the center of mass the total energy must exceed $2m_ec^2$

Absorption of gamma rays

Internal opacity: limit on δ - 1

Observations of gamma rays provide interesting limits on the minimum value of the Doppler factor

 $E_v = 10-100 \text{ GeV}$ hv = 5-50 eV (UV photons)

Internal opacity: limit on δ - 1

Observations of gamma rays provide interesting limits on the minimum value of the Doppler factor

 E_{γ} =10-100 GeV hv=5-50 eV (UV photons)

Without any correction:

 $\tau (x) = \sigma_{\gamma\gamma} R n(1/x) 1/x \sim (1/x)^{-\alpha} \sim x^{\alpha} \text{ increasing with } E (x=E/mc^2)$ where $n(1/x) 1/x \sim L(1/x) / R^2$

τ (100 GeV)>>1 gamma-rays cannot escape!!

Internal opacity: limit on δ - 2

e.g. Ghisellini & Dondi 1996

Taking into account relativistic motion:

1) Intrinsic energy of gamma-ray is lower: decreasing number density of target photons

2) Density of target soft photons also strongly decreases (lower luminosity, larger radius)

One finds: $\tau'(x) = \tau(x)/\delta^{4+2\alpha}$

δ > τ (x)^{1/(4+2α)} Typically δ>5

Blazars as cosmic beacons

Blazars illuminate the Universe with gamma rays

Gamma rays interact with the IR-O-UV bkg producing pairs (e.g. Stecker 1966, Nikishov 1966)

Spectral distortions useful to probe the poorly known Extragalactic Background Light (EBL)

Pairs re-emit through IC with CMB. Trajectories and fluxes depends on intergalactic magnetic fields

Cosmic beacons

Extragalactic background light

EBL measurements

Mazin & Raue 2007

Modeling EBL

Dominguez-Diaz et al. 2010

Modeling EBL

$$\tau_{\gamma\gamma}(E,z) = c \int_0^z \int_0^2 \int_{\epsilon}^{\infty} \sigma_{\gamma\gamma}(E,\epsilon,\mu,z') \frac{dn_{EBL}}{d\epsilon dz'} \frac{\mu}{2} \frac{dr}{dz'} d\epsilon d\mu dz'$$

Dominguez-Diaz et al. 2010

The "gamma-ray horizon"

Mean free path T=1

Coppi & Aharonian 1997

Constraining EBL with VHE spectra of blazars

Shock acceleration

SSC, large Emin

Constraining EBL with VHE spectra of blazars

SSC, large Emin

Aharonian et al. 2006

Modelled spectra

100

0.01 × 0.1

Mankuzhiyil, Persic & FT 2010

Cosmic beacons

Effect of IGMF

Effect of IGMF

 $\overline{\gamma_1 + \gamma_2} = e^- + e^+$

Effect of IGMF

$$ct_{\text{cool}} = \frac{3m_e c^2}{4\gamma U_{\text{CMB},0}(1+z_r)^4} \simeq 2 \times 10^{24} \gamma_6^{-1} (1+z_r)^{-4} \text{ cm}$$

"cooled " distribution

The reprocessed emission is contained within the primary beaming cone

 $heta_\gamma = rac{ct_{
m cool}}{r_{
m L}} = 1.17 \, B_{-15} \, \gamma_6^{-2} \, {
m rad}$

The reprocessed flux is diluted within a larger solid angle

Effective B-field

 \sim

A simplified model for the spectrum

FT et al. 2010

Basic requirements

- ✓ Hard and powerful TeV spectrum
- ✓ Large distance (high absorption)
- ✓ Low intrinsic GeV flux

1ES 0229+200: the source of desires

FT et al. 2009

1ES 0229+200: the source of desires

FT et al. 2009

B>0!

Adesso pappa!

BL Lac 1101-232 (z=0.186) found that, even assuming the lowest level of the IR background (estimated through

VHE emission of FSRQs

3C 279, z=0.536

Constraints from 3C279

Albert at al. 2008

y-ray emission from non-blazar AGNs

Only one non-blazar AGNs is known at VHE band: the radiogalaxy M87

y-ray emission from non-blazar AGNs

Only one non-blazar AGNs is known at VHE band: the radiogalaxy M87

VHE emission of M87

Emission region?

Misaligned (20 deg) blazar Georganopoulos et al. 2005 Lenain et al. 2007 FT and GG 2008

BH horizon Neronov & Aharonian 2007 Rieger & Aharonian 2008

Large scale jet Stawarz et al. 2003

Knot HST-1 (60 pc proj.)
Stawarz et al. 2006
Cheung et al. 2007

Acciari et al. 2008

 $\Gamma_{rel} = \Gamma_{layer} \Gamma_{spine} (1 - \beta_{layer} \beta_{spine})$

The spine sees an enhanced U_{rad} coming from the layer

Also the layer sees an from the spine

Misaligned structured blazar jet

T and GG 2008

Observed time: $(R_0/c)\Gamma^2(1-\beta cos\theta) \sim R_0/c!$

In the standard scenario $t_{var} > r_q /c = 1.4 M_9 h!$

Conclusion: only a small portion of the jet (and/or BH horizon) is involved in the emission

(e.g. Begelman, Fabian & Rees 2008)

Possible alternative:VHE emission from a fast, transient "needle" (Ghisellini & Tavecchio 2008)

VHE emission dominated by IC from the needle (spine) scattering the radiation of the jet (layer)

A different "flavour" of the spine-layer scenario

GG & FT 2008

The future -1 Fermi (former GLAST) ! First light, 96 hrs of integration

The future -2

New Cherenkov Telescope Arrays:

CTA, Europe

Suggested Preadings

Beaming: Ghisellini 1999, astro-ph/9905181

Unification schemes: Urry & Padovani 1995, PASP, 107, 803

Emission Mechanisms: Rybicki & Lightman, 1979, Wiley & Son

Jets: Begelman, Blandford & Rees, 1984, Rev. Mod. Physics, 56, 255 de Young, The physics of extragal. radio