The PADME experiment at LNF

Mauro Raggi, INFN Laboratori Nazionali di Frascati IAXO meeting, 18/04/2016

More info on PADME at:

- M. Raggi and V. Kozhuharov, Advances in High Energy Physics Vol. 2014 ID 959802
- Kick-off meeting di PADME: http://agenda.infn.it/event/padme-kickoff
- Indico PADME: https://agenda.infn.it/categoryDisplay.py?categId=782
- M. Raggi and V. Kozhuharov, "Results and perspectives in dark photon physics": http://www.sif.it/riviste/ncr/econtents/2015/038/10/article/0

What the universe made of?

???Dark Sector???

 Standard model only includes <20% of the matter in the universe

- We only know dark matter interact gravitationally
- Many open questions
 - What is dark Matter made of?
 - How dark matter interact, if it does, with SM particles?
 - Does one or more new dark force exist?
 - How complex is the dark sector spectrum?

19/04/16

Portals to secluded sector

19/04/16

Dark photon model

- If there is a new force in the dark sector we need a new particle with quantum numbers of the new force and of one of the SM forces. These particle is called "portal"
- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or A'
- This scenario is natural in many SM extensions and in particular in some classes of string theories
- The model become popular for its capability of reconciling experimental value with theory prediction for (g-2)µ

???Dark Sector???

A' production and decays

- A' can be produced in e⁺ collision on target by:
 - Bremsstrahlung: e⁺N → e⁺NA'
 - Annihilation: $e^+e^- \rightarrow \gamma A'$
 - Meson decays
- If no dark matter candidate lighter than the A' boson exists:
 - A' \rightarrow e⁺e⁻, μ ⁺ μ ⁻, hadrons, "visible" decays
 - For M_{A'}<210 MeV A' only decays to e⁺e⁻ with BR(e⁺e⁻)=1
- If any dark matter particle χ with $2M_{\chi} < M_{A'}$ exists
 - A' will dominantly decay into pure DM
 - BR(I+I-) suppressed by factor ε²
 - A' $\rightarrow \chi \chi \sim 1$. These are the so called decays to "invisible"

19/04/16

Dark photons searches

19/04/16

INFN

Status of "visible" and "invisible" A' searches

The PADME approach

- At present all experimental results rely on at least one of the following model-dependent assumptions:
 - A' decays to e^+e^- (visible decays assumption) and thus BR(A' $\rightarrow e^+e^-$) = 1
 - A' couples with the same strength to all SM fermions (kinetic mixing)
- In the most general scenario:
 - A' can decay to dark sector particles χ with $m_{\chi} < M_{A'}/2 \Rightarrow BR(A' \rightarrow e^+e^- <<1)$
 - Dump and meson decay experiment results suppressed by ε²
 - A' can even be stable (M_{A'}=0 or M_{A'}<2m_e)
- PADME aims at detecting A' produced in e^+e^- annihilation and decaying into any final state by searching for missing mass in $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow \chi \chi$ process
 - No assumption on the A' decays products PADME serches for $e^+e^- \rightarrow \gamma + M_{Miss}$
 - Only minimal assumption: A' couples to leptons
 - PADME will limit the coupling of any new light particle produced in e⁺e⁻ collisions: scalars (h'), vectors (A') or pseudoscalars (ALP)

19/04/16

PADME invisible technique

- (5000 550 MeV e⁺)/bunch on a 100 μ m diamond target with 50 bunch/s
 - Collect 1x10¹³ e⁺ on target in one-two year of data taking period at BTF
- Measure in the E_{Cal} the Ey and θy angle wrt to beam direction
- Compute the $M_{miss}^2 = (P4_{e^-} + P4_{beam} P_{4\gamma})^2$
 - $P_{e^-}^4 = (0,0,0,m_e) \text{ and } P_{beam}^4 = (0,0,P_{Beam},\text{sqrt}(P_{Beam}^2 + m_e^2))$

DA Φ **NE Beam Test Facility (BTF)**

	electrons	positrons				
Maximum beam energy (E _{beam})[MeV]	750 MeV	550 MeV				
Linac energy spread [Δ p/p]	0.5%	1%				
Typical Charge [nC]	2 nC	0.85 nC				
Bunch length [ns]	1.5 - 40					
Linac Repetition rate	1-50 Hz	1-50 Hz				
Typical emittance [mm mrad]	1	~1.5				
Beam spot σ [mm]	<1 mr	n				
Beam divergence	1-1.5 mrad					

- Able to provide electrons and positrons
 - Duty cylcle 50*40 ns= 2x10⁻⁷ s work in progress to reach 160 ns ideas for 480 ns
 - Request submitted for energy upgrade to reach ~1GeV.
- The accessible M_{A'} region is limited by E_{beam}
 - 0-22 MeV can be explored with 550 MeV e⁺ beam
 - Up to ~30 MeV with 1 GeV positrons

INFN

PADME at DAFNE BTF

Splitting of the present BTF line need

- Could be realized in early 2017
- Dedicated line for PADME in the present experimental hall

Limits to the experiment dimention

- No more than 4m in between target and Ecal
- If distance shorter than 3 meter additional optics could be installed to improve beam quality

19/04/16

The PADME experiment

- Beam: 10³-10⁴ e+ on target per 40 ns bunch, at 50 bunch/s (10¹³-10¹⁴ e+/year)
- Main detector components:
 - Active target, thin: 50-100μm diamond (Time, Ne-, beam position and spot size)
 - Scintillating veto ~1m length
 - Conventional magnet, B≈0.6T but large gap for gaining acceptance
 - Cylindrical BGO crystal EM calorimeter
- Measures: time, energy and direction of photons
- Compute the Mmiss² = $(P^4e^- + P^4_{beam} P^4_{\gamma})^2$
- $P_{e^-}^4 = (0,0,0,m_e)$ and $P_{beam}^4 = (0,0,550,sqrt(550^2 + m_e^2))$
- Veto additional charged particles and photons

19/04/16

PADME detector

PADME detector status

PADME ECal

Parameter Units:	r: ρ g/cm ³	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	n^{\natural}	$\operatorname{Relative}_{\operatorname{output}^{\dagger}}$	Hygro- scopic?	d(LY)/d7 %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	420^{s}	1.95	3.6^{s}	slight	-1.4
							6^{f}	310^{f}		1.1^{f}		
$PbWO_4$	8.3	1123	0.89	2.00	10.1	20.7	30^s	425^s	2.20	0.3^{s}	no	-2.5
							10^{f}	420^{f}		0.077^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce) 5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

- Cylindrical shape: radius 300 mm, depth of 220 mm
 - Inner hole 60-80 mm radius
 - 656 crystals 20x20x220 mm³
- Material BGO: high LY, high ρ , small X₀ and RM, long τ_{decay} , (free form L3 calorimeter)
- Expected performance:
 - σ(E)/E =1.1%/VE

 0.4%/E
 1.2% superB calorimeter test at BTF
 [NIM A 718 (2013) 107–109]
 - σ(θ) ~ 1-2 mrad
 - Angular acceptance (20 75) mrad

PADME backgrounds A'

19/04/16

INFN

Background estimates

- BG sources are: $e^+e^- \rightarrow \gamma\gamma$, $e^+e^- \rightarrow \gamma\gamma(\gamma)$, $e^+N \rightarrow e^+N\gamma$, Pile up
- Pile up contribution is important but rejected by the maximum cluster energy cut and M_{Miss2}.
- Veto inefficiency at high missing mass (E(e+) ≈ E(e+)beam)
 - New Veto detector introduced to reject residual BG
 - New sensitivity estimate ongoing

PADME-invisible decay sensitivity

- Based on 2.5x10¹⁰ fully GEANT4 simulated 550MeV e+ on target events
 - Number of BG events is extrapolated to 1x10¹³ electrons on target
- Using N(A'γ)=s(N_{BG})
- δ enhancement factor $\delta(M_{A'}) = \sigma(A' \gamma) / \sigma(\gamma \gamma)$ with $\epsilon = 1$

$$\frac{\Gamma(e^+e^- \to U\gamma)}{\Gamma(e^+e^- \to \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} * \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \epsilon^2 * \delta$$

PADME 2 years of data taking at 50% efficiency with bunch length of 40 ns

10¹³ EOT = 6000 e⁺/bunch × 3.1·10⁷s · 49 Hz

PADME can explore in a **model-independent way the** favourite by $(g-2)_{\mu}$ band up to $M^2_{A'} = 2m_e E_{e+}$

 E_{e+} =550 MeV: $M_{A'}$ < 23.7 MeV/ c^2

 E_{e+} =750 MeV: $M_{A'}$ < 27.7 MeV/ c^2

$$E_{e_{+}}$$
=1 GeV: $M_{A'}$ < 32 MeV/ c^{2}

ADME

PADME schedule

Technical run in late 2017 and first physics run in 2018 are foreseen

INF

19/04/16

ALPs landscape

ALP physics at PADME

Primakoff

PADME can search for invisible decaying or long living ALP by searching for $1 \gamma + M_{miss}^2$ final states

Bremsstrahlung In the visible final state a->yy

all production mechanisms can be explored extending the mass range in the region of ~100MeV

The observables at PADME will be: eγγ or γγγ

Annihilation

ALP decay to photons γ_{r}

Limits on ALPs coupling to photons

arXiv:1512.03069

XO meeting

ALPs background at PADME

MC invariant mass for γγ in time in the PADME Ecal (~1e10 e+).

Even without any selection PADME is almost background free for masses >40-50MeV

• Main backgrounds: $e^+e^- \rightarrow \gamma \gamma$, $e^+e^- \rightarrow \gamma \gamma(\gamma)$

- M(γγ) limited to ~24 MeV being the electron at rest
- Higher mass background events come from pileup of multiple bremsstrahlung coming from different primary positrons

19/04/16

Conclusions

- The PADME construction phase is just starting
 - Magnete delivered at LNF in December
 - First diamond target tests (20x20mm² e 50um di spessore)
 - First Ecal test beam with just 3x3 crystal matrix
- Approval status
 - Project has been endorsed by both LNF scientific committee and INFN CSN1
 - Crystals from L3 collaborations obtained
 - 2016 budget secured in INFN CSN1 by "What Next" program
 - Expected to take data already during 2018
- PADME can search for ALPs in the range from ~0.1 to 100 MeV
 - Sensitivity studies required to asses the real potential and to optimise the detector and beam is needed

NA62 experiment at CERN

- Already running to search for $K^+ \rightarrow \pi^+ \nu \nu$
 - Aims to a 10% measurement in 2 years of data taking
- Running until 2018
- Different dark sector searches possible
 - A', ALPs, Heavy neutral leptons
- Closing the beam dump system can be used as dump experiment with ~10¹² pps on target per effective second

ALPs search at NA62

- NA62 can be used as dump experiment to produce ALPs through Primakov effect
- ALPs could fly in the decay region for proper lifetime values
- Decay of ALPs into two photons can be detected in NA62 LKr electromagnetic calorimeter
- Few hours run collected in 2015 to understand backgrounds

ADME

19/04/16

Spare slides

19/04/16

The simplest dark sector model

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or A'
 - Two type of interactions with SM particles should be considered
- As in QED, this new force will generate new interactions of the type:

$${\cal L}~\sim~g'q_far{\psi}_f\gamma^\mu\psi_f U'_\mu$$

- Not all the SM particles need to be charged under this new symmetry
- In the most general case qf can be different in between leptons and quarks and can even be 0 for quarks. [P. Fayet, Phys. Lett. B 675, 267 (2009), arXiv:1408.4256]
- The coupling constant and the charges can be generated effectively through the kinetic mixing between the QED and the new U(1) gauge bosons

$$\mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$$

In this case q_f is just proportional to electric charge and it is equal for both quarks and leptons.

Muon g-2 SM discrepancy

g-2 and A'

About 3σ discrepancy between theory and experiment (3.6 σ , if taking into account only e+e- \rightarrow hadrons) Additional diagram with dark photon exchange can fix the discrepancy (with sub GeV A' masses)

Contribution to g-2 from dark photon

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}), \qquad (17)$$

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10$ -100 MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

Dark matter where to search

- Without introducing a new force in SM: U(1)_Y+SU(2)_{Weak}+SU(3)_{Strong}
 - Dark matter can't be strong interacting (scattering cross section too high)
 - Cannot be electrically charge it would not be dark!
 - It can be weakly interacting and massive!

- The WIMP has all the characteristics needed to solve the dark matter problem...
 - But more than 20 years of unsuccessful attempt to detect WIMPs
 - Strong constraints from the LHC and direct searches at masses up to 1TeV

What about introducing a new dark force?

19/04/16