

Results from PVLAS

Guido Zavattini
Università di Ferrara and INFN-Ferrara
On behalf of the PVLAS collaboration

Summary

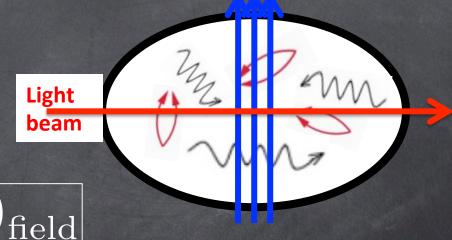
- Introduction and aim of the PVLAS experiment
 - Vacuum magnetic birefringence
 - Axion search
- Experimental method
 - Heterodyne technique
 - Fabry-Perot interferometer
- The PVLAS experiment in Ferrara
- Results
- Future

Aim of the PVLAS experiment

Light propagation in an external field

Experimental study of the propagation of light in vacuum in an external field

We are aiming at measuring <u>variations</u> of the index of refraction in vacuum due to the external <u>magnetc</u> field



Magnetic field

$$n_{\rm vac} = 1 + (n_{\rm B} - i\kappa_{\rm B})_{\rm field}$$

The full program of the PVLAS experiment is to detect and measure

- LINEAR BIREFRINGENCE
- LINEAR DICHROISM

acquired by vacuum induced by an external magnetic field B

Linear birefringence

- A birefringent medium has n_{||} ≠ n_⊥
- A linearly polarized light beam propagating through a birefringent medium will acquire an ellipticity ψ

If the light polarization forms an angle ϑ with respect to the magnetic field **B** the electric field of the laser beam before and after can be expressed as

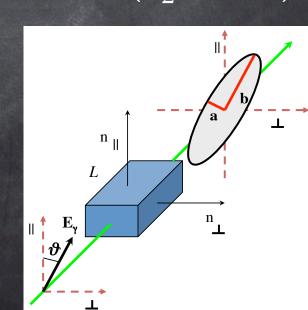
$$\vec{E}_{\gamma} = E_{\gamma} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

After a phase delay ϕ of the component parallel to ${\bf B}$ with respect to the component perpendicular to ${\bf B}$

$$\phi = \frac{2\pi}{\lambda}(n_{\parallel} - n_{\perp})L$$

Ellipticity

$$\psi = \frac{a}{b} \approx \frac{\pi \Delta nL}{\lambda} \sin 2\theta$$



 $|ec{E}_{\gamma} \simeq \overline{E}_{\gamma} \left(\frac{1}{i \frac{\phi}{2} \sin 2\vartheta} \right)$

Linear dichroism

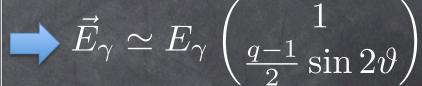
- A dichroic medium has different extinction coefficients: $K_{\parallel} \neq K_{\perp}$
- A linearly polarized light beam propagating through a dichroic medium will acquire an apparent rotation ϵ

If the ligh polarization forms an angle ϑ with respect to the magnetic field **B** the electric field of the laser beam before and after can be expressed as

$$\vec{E}_{\gamma} = E_{\gamma} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Longrightarrow$$

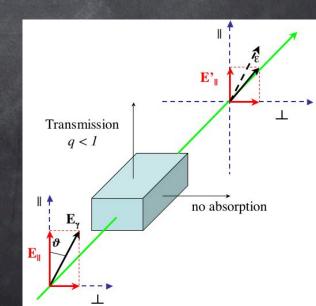
After a reduction of the field component parallel to **B** with respect to the component perpendicular to **B** by

$$q-1=rac{2\pi}{\lambda}(\kappa_{\parallel}-\kappa_{\perp})L$$



Apparent rotation

$$\epsilon pprox \left(rac{q-1}{2}
ight)\sin 2artheta = rac{\pi\Delta\kappa L}{\lambda}\sin 2artheta$$



Heisenberg, Euler, Kochel and Weisskopf ('36)

They studied the electromagnetic field in the presence of the virtual electron-positron sea discussed a few years before by Dirac. The result of their work is an effective Lagrangian density describing the electromagnetic interactions. At lowest order (Euler – Kochel):

$$\mathcal{L}_{EH} = \frac{1}{2\mu_0} \left(\frac{\vec{E}^2}{c^2} - \vec{B}^2 \right) + \frac{A_e}{\mu_0} \left[\left(\frac{\vec{E}^2}{c^2} - \vec{B}^2 \right)^2 + 7 \left(\frac{\vec{E}}{c} \cdot \vec{B} \right)^2 \right] + \dots$$

$$A_e = \frac{2}{45\mu_0} \frac{\alpha^2 \lambda_e^3}{m_e c^2} = 1.32 \times 10^{-24} \text{ T}^{-2}.$$

H Euler and B Kochel, Naturwissenschaften 23, 246 (1935)

W Heisenberg and H Euler, *Z. Phys.* **98**, 714 (1936) H Euler, *Ann. Phys.* **26**, 398 (1936)

V Weisskopf, Mat.-Fis. Med. Dan. Vidensk. Selsk. 14. 6 (1936)

Which is valid for:

- 1) slowly varying fields
- 2) fields smaller than their critical value (B << $4.4 \cdot 10^9$ T; E << $1.3 \cdot 10^{18}$ V/m)

In the presence of an external field vacuum is polarized. It became evident that photon – photon interactions could occur in vacuum.

This lagrangian was validated in the framework of QED by Schwinger (1951), and the processes described by it can be represented using Feynman diagrams.

Index of refraction - birefringence Children de l'Alfrica Marie

$$n_{\mathrm{B},\parallel}$$
 and $n_{\mathrm{B},\perp} \neq 0$ $v \neq c$ $n_{\mathrm{B},\parallel} - n_{\mathrm{B},\perp} \neq 0$ anisotropy

•
$$v \neq c$$

$$|n_{\parallel} - n_{\perp} = 3A_e B^2$$

$$n_{\parallel} - n_{\perp} = 2.5 \times 10^{-23} \ @ B = 2.5 \ {
m T}$$

QED also predicts dichroism due to photon splitting in an external magnetic field **but** it is unmeasureably small.

Axion like particles

Axion-like particles

One can add extra terms [*] to the E-H effective lagrangian to include contributions from hypothetical <u>neutral light particles interacting</u> <u>weakly with two photons</u> (Heaviside – Lorentz units)

$$L_{\phi} = g_{\rm a}\phi \left(\vec{E}_{\gamma} \cdot \vec{B}_{\rm ext}\right)$$

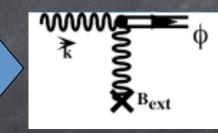
pseudoscalar case: Interaction if polarization is parallel to B_{ext}

 $g_{o'}$ g_s are the coupling constants

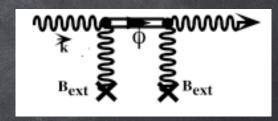
Effects on photon propagation

The photon will oscillate with the axion

Absorption



Dispersion



$$L_{\sigma} = g_{\rm s}\sigma \left(\vec{B}_{\gamma} \cdot \vec{B}_{\rm ext} \right)$$

scalar case: Interaction if

polarization is perpendicular to $\mathbf{B}_{\mathrm{ext}}$

DICHROISM

BIREFRINGENCE

Axion-like particles (pseudoscalar)

Dichroism induces an apparent rotation ε

$$\epsilon = -\sin 2\vartheta \left(\frac{g_{\rm a,s}L}{4}\right)^2 {\color{red}B_{\rm ext}^2N\left(\frac{\sin x}{x}\right)^2} \quad \text{N = number of passes} \quad \text{through the magnetic field}$$

• Birefringence induces an ellipticity ψ

$$\psi = \sin 2\vartheta \frac{g_{\mathrm{a,s}}^2 k L}{4m_{\mathrm{a,s}}^2} B_{\mathrm{ext}}^2 N \left(1 - \frac{\sin 2x}{2x} \right)$$

Units
$$1 \text{ T} = \sqrt{\frac{\hbar^3 c^3}{e^4 \mu_0}} = 195 \text{ eV}^2$$

$$1 \text{ m} = \frac{e}{\hbar c} = 5.06 \cdot 10^6 \text{ eV}^{-1}$$

Where
$$x=\frac{L}{2}\left[\frac{m_{\mathrm{a,s}}^2}{2k}\right]$$
 and k is the

- ullet Both $ar{\epsilon}$ and ψ are proportional to N
- ullet Both ϵ and ψ are proportional to B^2
- ε depends only on $g_{a,s}$ for small x
- the ratio ψ / ε depends only on $m_{a.s.}^2$

Both $g_{a,s}$ and $m_{a,s}$ can be disentangled

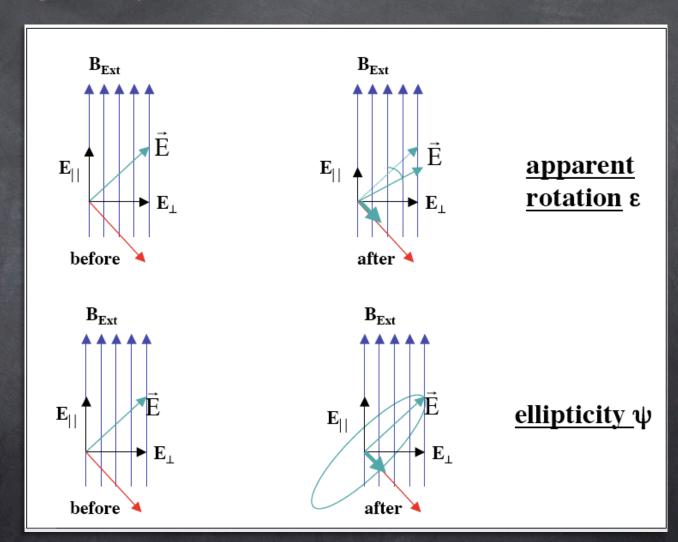
Summing up ...

Dichroism Δ**K**

- •Real particle production
- (Photon splitting)

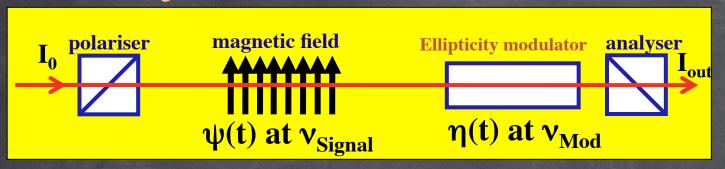
Birefringence ∆n

- QED dispersion
- Virtual particle production



Both Δn and $\Delta \kappa$ are defined with sign

Heterodyne detection



- The Intensity measured at the output is
- $\overline{I} = \vec{E}^T \cdot \vec{E}^*$
- Small ellipticities add up. Let us therefore add a known time dependent ellipticity with a modulator placed with ϑ = 45°

$$\vec{E}_{\text{out}} = E_0 \underbrace{\left(i\psi \sin 2\vartheta + i\eta(t)\right)}_{0}$$

Making artheta time dependent by rotating the magnetic field

$$I_{\text{out}} \simeq I_0 \left[\eta(t)^2 + 2\eta(t)\psi \sin 2\vartheta(t) + \ldots \right]$$

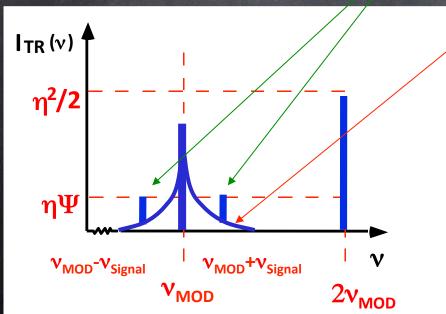
The intensity is linear in ψ

Fourier spectrum

In practice, nearly static ellipticities $\alpha(t)$ generate a 1/f noise centered around $v_{\rm Mod}$. Including the polarizers' extinction ratio σ^2

$$I_{Tr} = I_0 \left[\sigma^2 + \left(\psi(t) + \eta(t) + \beta_s(t) \right)^2 \right]$$

$$= I_0 \left[\sigma^2 + \left(\eta(t)^2 + 2\psi(t)\eta(t) + 2\alpha(t)\eta(t) + \ldots \right) \right]$$
signal noise



Main frequency components at $v_{\text{Mod}} \pm v_{\text{Signal}}$ and $2v_{\text{Mod}}$

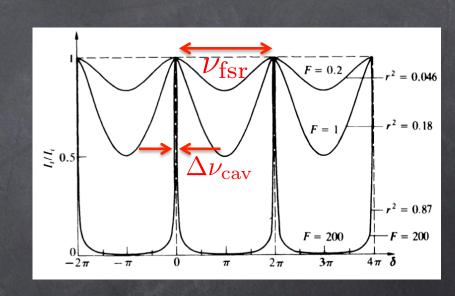
Signal amplification

 To increase the optical path length within the magnetic field a Fabry-Perot cavity is used. The amplification factor is

$$N = \frac{2\mathcal{F}}{\pi}$$

where ${\mathcal F}$ is the finesse of the cavity.

$$\mathcal{F} = rac{
u_{
m fsr}}{\Delta
u_{
m cav}}$$



The intensity then will be

$$I_{
m out} \simeq I_0 \left[\sigma^2 + \eta(t)^2 + 2\eta(t) \left(rac{2\mathcal{F}}{\pi} \right) \psi \sin 2\vartheta(t) + 2\eta(t) \alpha(t) ...
ight]$$

Ellipiticity vs Rotations

• Ellipticities have an imaginary component whereas rotations are real. In the presence of an induced rotation ε and an ellipticity modulator η , the electric field after the analyzer is

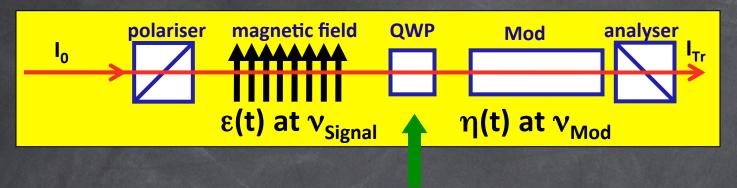
$$\vec{E}_{\rm out} \simeq E_0 \left(\frac{0}{\epsilon + i\eta} \right)$$

• The intensity will be

$$I_{\text{out}} = I_0 |\epsilon + i\eta|^2 = I_0 (\epsilon^2 + \eta^2)$$

In principle rotations do not beat with ellipticities

Rotation measurement



QWP can be inserted to transform a rotation ε into an ellipticity ψ with the same amplitude. It can be oriented in two positions:

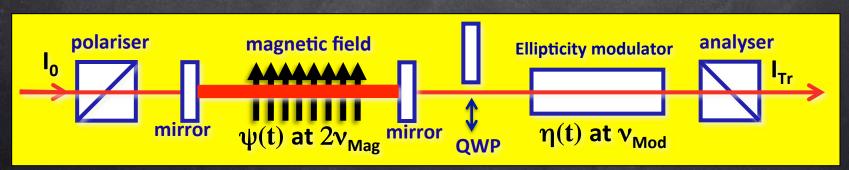
QWP axis along polarization
$$\epsilon(t) \Rightarrow \left\{ \begin{array}{ll} \psi(t) & \text{for QWP } \parallel \\ -\psi(t) & \text{for QWP } \perp \end{array} \right.$$

$$I_{\text{out}} \simeq I_0 \left[\sigma^2 + \eta(t)^2 \pm 2\eta(t) \left(\frac{2\mathcal{F}}{\pi} \right) \epsilon \sin 2\theta(t) + 2\eta(t)\alpha(t) \dots \right]$$

Main frequency components at $v_{Mod} \pm v_{Signal}$ and $2v_{Mod}$

PVLAS scheme

- The Fabry-Perot cavity will increase the single pass ellipticity by a factor $N=\frac{2\mathcal{F}}{\pi}$
- The heterodyne detection linearizes the ellipticity ψ to be measured
- The rotating magnetic field will modulate the searched effect



Experimental parameters Lines

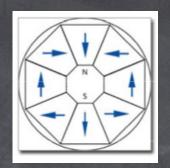
Wavelength = 1064 nm

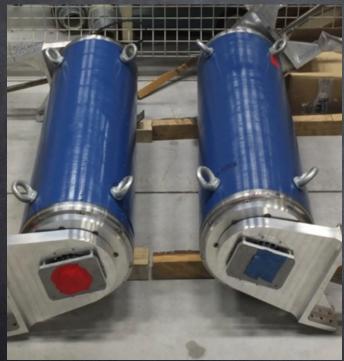
•
$$\int_0^L B_{\text{Ext}}^2 dl = 10.25 \,\text{T}^2 \text{m};$$
 $B_{\text{Ext}} = 2.5 \,\text{T}, L = 1.6 \,\text{m}$

- Magnet rotation frequency 3-20 Hz
- Present finesse = 710000.
- Vacuum: ≈ 10⁻⁸ mbar
- Expected QED ellipticity signal: 5.4·10⁻¹¹

The magnets

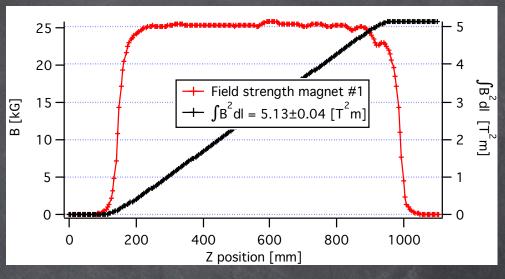
Halbach configuration

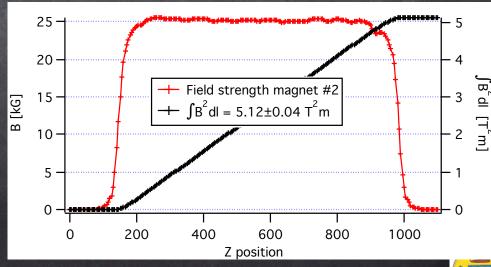




Magnets have built in magnetic shielding Stray field below 1 Gauss on side

Total field integral = (10.25 ± 0.06) T²m





Vacuum and pumping

INFN
Istituto Naziona
di Fisica Nuclea

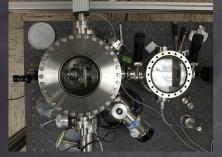
- All components of the vacuum system and optical mounts made with non magnetic materials (at best)
- Vacuum pipe through magnet made in Pyrex to avoid eddy currents
- Pyrex pipe externally varnished with black paint to avoid interaction of scattered light with magnets
- Baffles inside the Pyrex tubes to reduce diffused light
- Motion of optical components inside vacuum chamber by means of piezo-motor
- High vacuum obtained with getter NEG pumps –
 noise free, magnetic field free

Vacuum chambers

Linear translator

Getter pumps

Optics layout



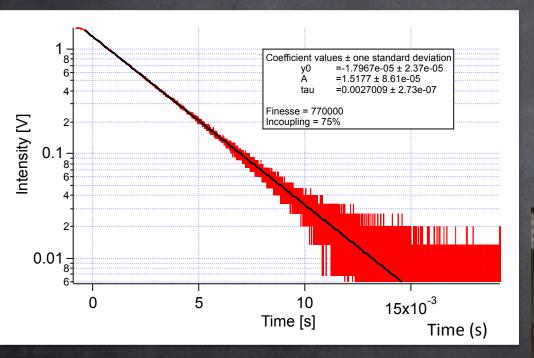
3.3 m long Fabry Perot cavity



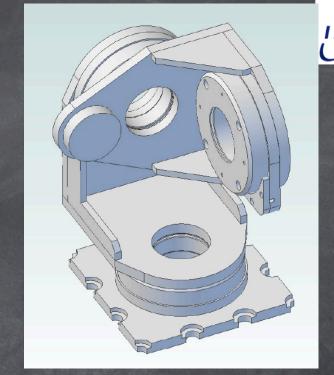
2 W NPRO Nd:Yag Laser λ = 1064 nm

Cavity

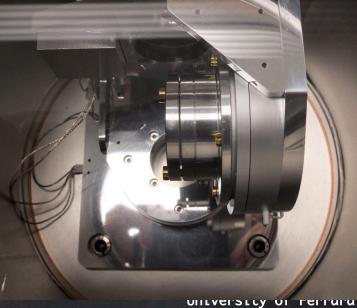
- Fabry Perot cavity high finesse mirrors
- Spherical mirror with r = -2 m
- Automatic locking system to allow long integration times



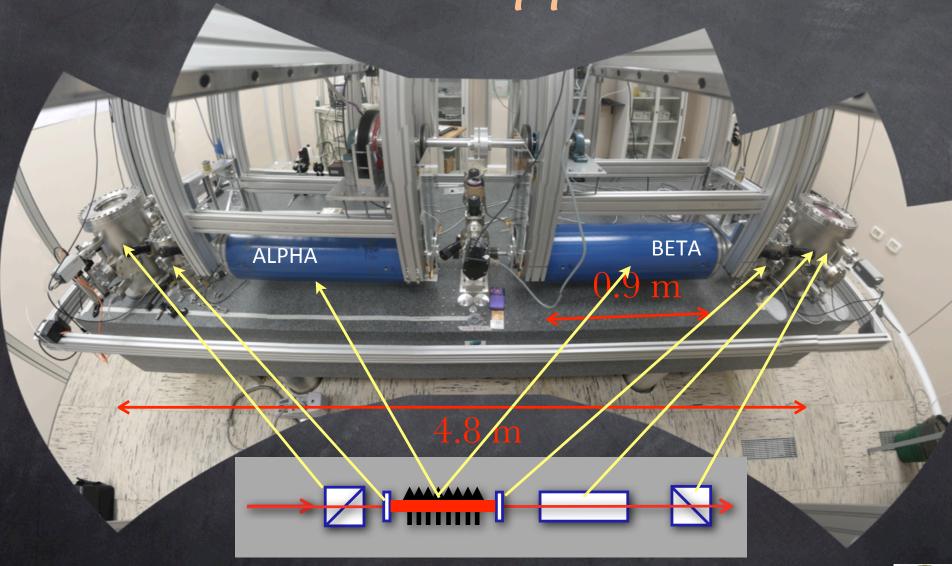
- Transmitted power 25%
- Highest measured finesse = 770 000
 N = 480 000
- τ = 2.7 ms , d = 3.3 m, 65 Hz FWHM



3-Motor Mirror tilter, θ_x , θ_y , θ_z



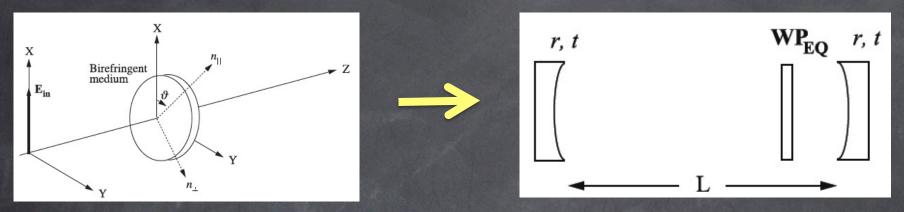
The mounted apparatus



Calibration

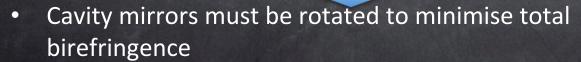
Mirror birefringence

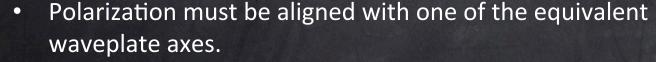
Fabry Perot cavity mirrors have intrinsic static birefringence

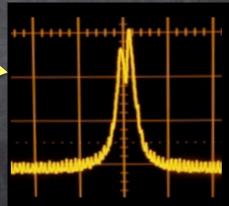


The resulting cavity behaves like a waveplate. This results in:

- cavity mode splitting
- increased 1/f noise?







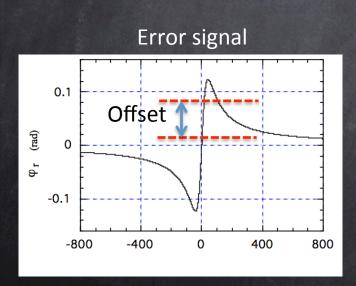
Cavity mode splitting mixes ellipticities with rotations

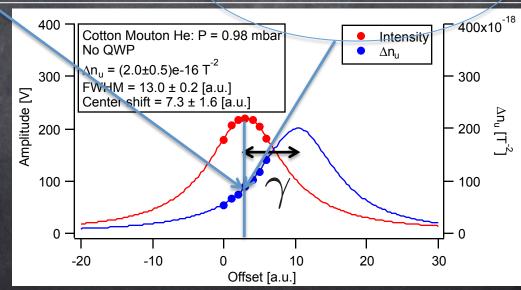
Cavity birefringence

- With He gas at various pressures we measured the ellipticity as a function of the position on the Airy curve (feedback offset).
- No dichroism is induced in He: $\varepsilon = 0$

$$I_{\text{out}} \simeq I_0 \left\{ \sigma^2 + \eta(t)^2 + \eta(t)\alpha(t) + \left(\frac{2\mathcal{F}}{\pi} \right) \gamma \epsilon(t) \right\}$$

$$+2\eta(t) \left(\frac{2\mathcal{F}}{\pi} \right) \left[\psi(t) + \left(\frac{2\mathcal{F}}{\pi} \right) \gamma \epsilon(t) \right] \left(\frac{1}{1 + \left(\frac{2\mathcal{F}}{\pi} \right)^2 \sin^2 \gamma/2} \right)$$



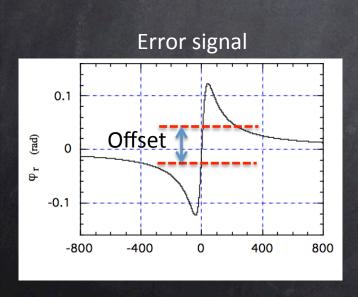


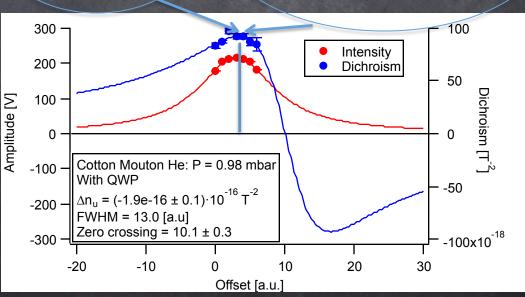
Example with P = 0.98 mbar He

Cavity birefringence

• By inserting a quarter wave plate after the cavity and with He gas at various pressures, we also measured the rotation as a function of feedback offset

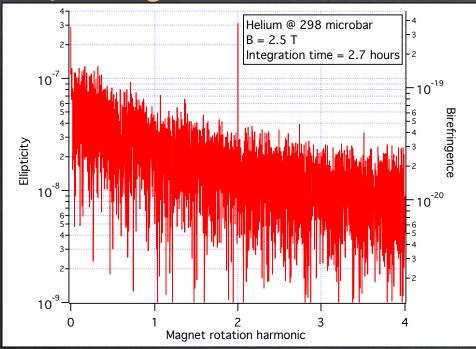
$$I_{\text{out}} \simeq I_0 \left\{ \sigma^2 + \eta(t)^2 + \eta(t)\alpha(t) + 2\eta(t) \left(\frac{2\mathcal{F}}{\pi} \right) \left[\epsilon(t) - \left(\frac{2\mathcal{F}}{\pi} \right) \gamma \psi(t) \right] \left(\frac{1}{1 + \left(\frac{2\mathcal{F}}{\pi} \right)^2 \sin^2 \gamma/2} \right) \right\}$$





Example with P = 0.98 mbar He

Measurement output



The **amplitude** measures the ellipticity/rotation
The **phase** is related to the acquisition trigger and
to the magnetic field direction relative to the
polarization. A true physical signal must have a
definite phase detremined with gases

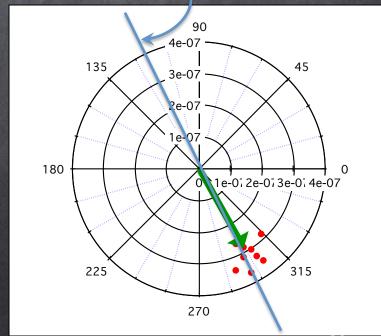
$$\psi(t) = \psi_0 \sin(2\omega_{\text{Mag}} + \vartheta_0)$$

Heterodyne detection technique (Rotating Magnet)

Measured effect given by Fourier amplitude and phase at signal frequency

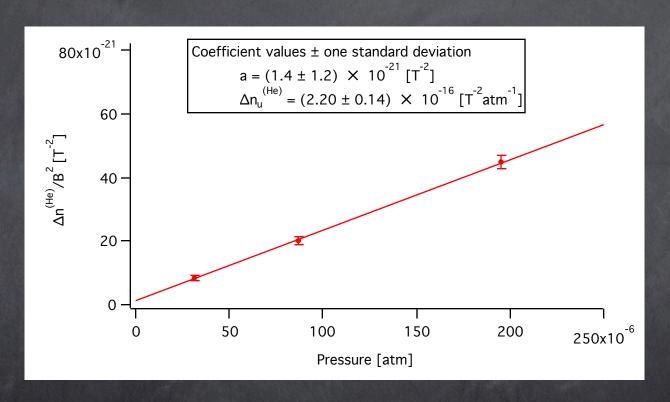
Vector in the polar plane.

Defines <u>physical axis</u> for any birefringence.



Calibration with He

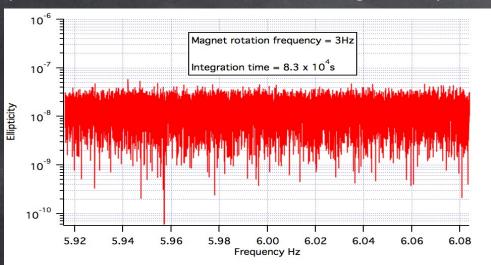
Takes into account the response of the birefringent cavity



The low pressure point required 5 hours of integration: apparatus is stable. It corresponds to a birefringence $\Delta n = 8.6 \cdot 10^{-21}$

Vacuum results

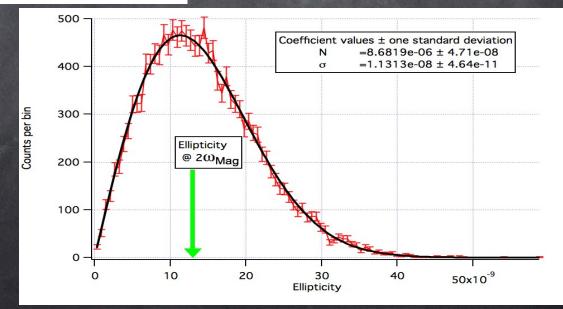
Spectrum of obtained data around signal frequency



Distribution of noise Rayleigh function

$$P(r) = N \frac{r}{\sigma_{\psi}^{2}} e^{-\frac{r^{2}}{2\sigma_{\psi}^{2}}}$$

$$\sigma_{\psi}$$
 = 1.1 10⁻⁸



Ellipticity data

Run #	Quantity	Magnets	2ν _B (Hz)	T (s)	\mathcal{F}	$k(\alpha)$
0	ψ	MA + MB		6.7×10^{5}	6.7×10^{5}	0.50
1	ψ	MB	8	1.0×10^6	7.0×10^5	0.65
2	ψ	MA	10	1.0×10^6	7.0×10^5	0.65
3	ψ	MB	10	8.9×10^5	7.0×10^5	0.65
4	ψ	MA	12.5	8.9×10^5	7.0×10^5	0.65
5	θ	MA + MB	10	1.4×10^5	7.0×10^5	0.65

2014 ellipticity data. (PRD **90** (2014) 092003)

2015 Ellipticity measurements without QWP

2015 Rotation measurement with QWP

	的现在分词在自身自己研究性识别				
Run #	Quantity	In-phase	Quadrature	σ	$S_{2\nu_B}^{\text{meas}} (1/\sqrt{\text{Hz}})$
0	ψ	$+5.2 \times 10^{-10}$	$+6.5 \times 10^{-10}$	2.6×10^{-9}	2.1×10^{-6}
2	ψ	-6.9×10^{-11}	$+2.6 \times 10^{-10}$	4.9×10^{-10}	4.9×10^{-7}
3	ψ	-4.1×10^{-10}	$+1.0 \times 10^{-9}$	5.4×10^{-10}	5.1×10^{-7}
5	θ (rad)	-6.6×10^{-11}	-1.9×10^{-9}	1.3×10^{-9}	4.8×10^{-7}
0′	θ (rad)	$+5.2 \times 10^{-10}$		2.6×10^{-9}	2.1×10^{-6}
2'	θ (rad)	-9.4×10^{-11}		6.7×10^{-10}	6.7×10^{-7}
3′	θ (rad)	-5.6×10^{-10}		7.4×10^{-10}	6.9×10^{-7}
5′	ψ	$+9.0 \times 10^{-11}$		1.8×10^{-9}	6.5×10^{-7}
4					

Birefringence - dichroism data Chille

Run #	Quantity	In-phase	Quadrature	σ	$S_{2\nu_B}^{\text{meas}} (1/\sqrt{\text{Hz}})$
0	Δn	$+2.5 \times 10^{-22}$	$+3.1 \times 10^{-22}$	1.3×10^{-21}	1.0×10^{-18}
2	Δn	-6.4×10^{-23}	$+2.4 \times 10^{-22}$	4.5×10^{-22}	4.5×10^{-19}
3	Δn	-3.8×10^{-22}	$+9.3 \times 10^{-22}$	5.0×10^{-22}	4.7×10^{-19}
5'	Δn	$+4.2 \times 10^{-23}$		8.2×10^{-22}	3.0×10^{-19}
0'	$\Delta \kappa$	$+2.5 \times 10^{-22}$		1.3×10^{-21}	1.0×10^{-18}
2'	$\Delta \kappa$	-8.7×10^{-23}		6.2×10^{-22}	6.2×10^{-19}
3'	$\Delta \kappa$	-5.2×10^{-22}		6.8×10^{-22}	6.4×10^{-19}
5	$\Delta \kappa$	-3.1×10^{-23}	-8.8×10^{-22}	6.0×10^{-22}	2.2×10^{-19}

Della Valle et al., EPJ C, (2016) 76:24

- Birefringence and dichroisms for 2.5 T
- Unitary birefringence $\Delta n_u = \frac{\Delta n}{B^2}$

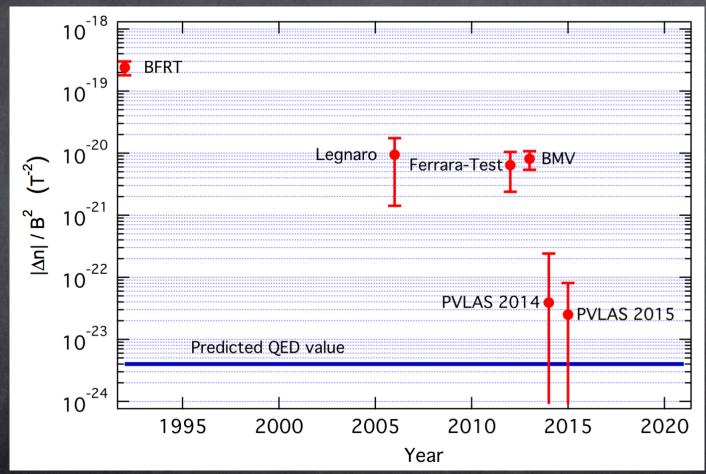
Averages

$$\Delta n^{\text{(PVLAS)}} = (-1.5 \pm 3.0) \times 10^{-22}$$

 $\Delta \kappa^{\text{(PVLAS)}} = (-1.6 \pm 3.5) \times 10^{-22}$

PVLAS combined best value

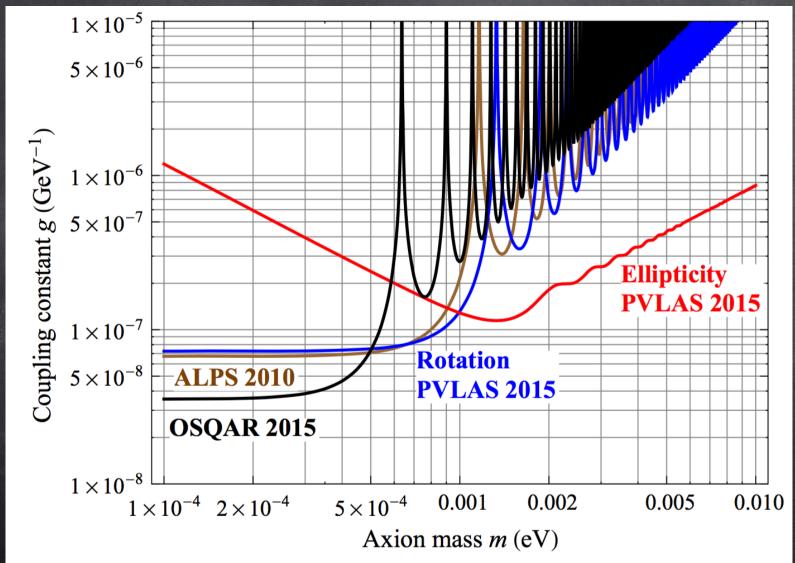
PVLAS best value:
$$\Delta n_u^{({\rm vac})} = (-24 \pm 48) \times 10^{-24} \; {\rm T}^{-2}$$



Della Valle et al., EPJ C, (2016) 76:24

$$\Delta n_{\nu}^{(\text{qed})} = 3A_e = +3.96 \times 10^{-24} \text{ T}^{-2}$$

Axion-like particles



Della Valle et al., EPJ C, (2016) 76:24

Thank you for your attention