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Summary 

•  Introduc9on	and	aim	of	the	PVLAS	experiment	
–  Vacuum	magne9c	birefringence	
–  Axion	search	

•  Experimental	method	
–  Heterodyne	technique	
–  Fabry-Perot	interferometer	

•  The	PVLAS	experiment	in	Ferrara	
•  Results	
•  Future	
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Aim of the PVLAS experiment 
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Light propagation in an external field 

•  Experimental	study	of	the	propaga9on	of	light	in	
vacuum	in	an	external	field	

We	are	aiming	at	measuring	varia%ons	
of	the	index	of	refrac%on	in	vacuum	
due	to	the	external	magnetc	field	

Magnetic field

Light	
beam	

nvac = 1 + (nB � iB)field
The	full	program	of	the	PVLAS	experiment	is	to	detect	and	measure		

• 	LINEAR	BIREFRINGENCE	
• 	LINEAR	DICHROISM	

acquired	by	vacuum	induced	by	an	external	magne9c	field	B	
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Linear birefringence 
•  A	birefringent	medium	has	n||	≠	n⊥	
•  A	linearly	polarized	light	beam	propaga9ng	through	a	birefringent	medium	will	

acquire	an	ellip9city	ψ	

If	the	light	polariza9on	forms	an	angle	ϑ	with	respect	to	the	magne9c	field	B	
the	electric	field	of	the	laser	beam	before	and	aWer	can	be	expressed	as	

AWer	a	phase	delay	φ	of	the	
component	parallel	to	B	with	
respect	to	the	component	
perpendicular	to	B	
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Linear dichroism 
•  A	dichroic	medium	has	different	ex9nc9on	coefficients:	κ||	≠	κ⊥		
•  A	linearly	polarized	light	beam	propaga9ng	through	a	dichroic	medium	

will	acquire	an	apparent	rota%on	ε

If	the	ligh	polariza9on	forms	an	angle	ϑ	with	respect	to	the	magne9c	field	
B	the	electric	field	of	the	laser	beam	before	and	aWer	can	be	expressed	as	

AWer	a	reduc9on	of	the	field	
component	parallel	to	B	with	
respect	to	the	component	
perpendicular	to	B	by	

Apparent	rota9on	
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Heisenberg, Euler, Kochel and Weisskopf (‘36) 

7

They	studied	the	electromagne9c	field	in	the	presence	of	the	virtual	electron-positron	sea	
discussed	a	few	years	before	by	Dirac.		The	result	of	their	work	is	an	effec9ve	Lagrangian	
density	describing	the	electromagne9c	interac9ons.	At	lowest	order	(Euler	–	Kochel):	
	

Which	is	valid	for:		
	1)	slowly	varying	fields	
	2)	fields	smaller	than	their	cri9cal	value	(B	<<	4.4·109	T;	E	<<	1.3·1018	V/m)	

	

In	the	presence	of	an	external	field	vacuum	is	polarized.	It	became	evident	that	
photon	–	photon	interac9ons	could	occur	in	vacuum.	
	
This	lagrangian	was	validated	in	the	framework	of	QED	by	Schwinger	(1951),	and	the	processes	
described	by	it	can	be	represented	using	Feynman	diagrams.	

H	Euler	and	B	Kochel,	Naturwissenscha@en	23,	246	(1935)	
W	Heisenberg	and	H	Euler,	Z.	Phys.	98,	714	(1936)	
H	Euler,	Ann.	Phys.	26,	398	(1936)		
V	Weisskopf,	Mat.-Fis.	Med.	Dan.	Vidensk.	Selsk.	14.	6	(1936)	
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Index of refraction - birefringence 

• 		
• 	anisotropy	

8

nB,k and nB,? 6= 0
nB,k � nB,? 6= 0

QED	also	predicts	dichroism	due	to	photon	spli*ng	in	an	external	
magne9c	field	but	it	is	unmeasureably	small.	

nk � n? = 3AeB
2

Numerically	

nk � n? = 2.5⇥ 10�23 @ B = 2.5 T

v 6= c
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Axion like particles 
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Axion-like particles 
One	can	add	extra	terms	[*]	to	the	E-H	effec9ve	lagrangian	to	include	
contribu9ons	from	hypothe9cal	neutral	light	par%cles	interac%ng	
weakly	with	two	photons	(Heaviside	–	Lorentz	units)	

scalar	case:	Interac9on	if	
polariza9on	is	perpendicular	to	Bext	

pseudoscalar	case:	Interac9on	if	
polariza9on	is	parallel	to	Bext	

[L.Maiani, R. Petronzio, E. Zavattini,  Phys. Lett B, Vol. 173, no.3 1986]
[E. Massò and R. Toldrà,  Phys. Rev. D, Vol. 52, no. 4, 1995]

ga,	gs	are	the	coupling	constants	

Absorp9on	

DICHROISM	

Dispersion	

BIREFRINGENCE	

Effects	on	photon	propaga%on	
The	photon	will	oscillate	with	the	axion	
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Axion-like particles (pseudoscalar) 

•  Dichroism	induces	an	apparent	rota9on	ε

	

•  Birefringence	induces	an	ellip9city	ψ

• 	Both	ε	and	ψ	are	propor9onal	to	N	
• 	Both	ε	and	ψ	are	propor9onal	to	B2	
• 	ε	depends	only	on	ga,s	for	small	x	
• 	the	ra%o	ψ / ε	depends	only	on	m2

a,s
	

	
Both	ga,s	and	ma,s	can	be	disentangled	

N	=	number	of	passes	
through	the	magne9c	field	
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Summing up ... 
Dichroism	Δκ
	
• Real	par9cle	
produc9on	
• (Photon	spli*ng)	

Birefringence	Δn	
	
• 	QED	dispersion	
• 	Virtual	par9cle	
produc9on	

Both	Δn	and	Δκ	are	defined	with	sign	

12IAXO	Workshop,	Frasca9,	April	2016	



University of Ferrara

Heterodyne detection 

•  The	Intensity	measured	at	the	output	is		

	

•  Small	ellip9ci9es	add	up.	Let	us	therefore	
add	a	known	9me	dependent	ellip9city	
with	a	modulator	placed	with	ϑ	=	45o	

	

polariser magnetic field analyser

ψ(t) at νSignal η(t) at νMod

Iout
I0

Ellipticity modulator
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The	intensity	is	linear	in	ψ

Making	ϑ		9me	dependent	by	rota9ng	the	magne9c	field	
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I	TR	(	ν	)	

η	2	/2	

ηΨ	

νMOD	 2ν	MOD	

ν	νMOD+νSignal	νMOD-νSignal	

In	prac9ce,	nearly	sta9c	ellip9ci9es	α(t)	generate	a	1/f	noise	
centered	around	νMod.	Including	the	polarizers’	ex9nc9on	ra9o	σ2	

ITr = I0 σ
2 + ψ(t)+η(t)+βs (t)( )2!

"
#
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= I0 σ
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noise	signal	

Fourier spectrum 

14

Main	frequency	components	at 
νMod±νSignal and 2νMod 

IAXO	Workshop,	Frasca9,	April	2016	
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Signal amplification 

•  To	increase	the	op9cal	path	length	within	the	magne9c	field	a	
Fabry-Perot	cavity	is	used.	The	amplifica9on	factor	is	

where							is	the	finesse	of	the	cavity.	

	

	

•  The	intensity	then	will	be	
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Ellipiticity vs Rotations 
•  Ellip9ci9es	have	an	imaginary	component	whereas	rota9ons	

are	real.	In	the	presence	of	an	induced	rota9on	ε and	an	
ellip9city	modulator	η,	the	electric	field	aWer	the	analyzer	is	

	

	

•  The	intensity	will	be	
	

In	principle	rota9ons	do	not	beat	with	ellip9ci9es	
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Rotation measurement 
I0	

polariser	 magne%c	field	 Mod	 analyser	

ε(t) at νSignal η(t) at νMod	

ITr	
QWP	

QWP	can	be	inserted	to	transform	a	rota%on	ε	into	an	ellip%city	ψ	with	the	same	amplitude.	
It	can	be	oriented	in	two	posi%ons:	
	
QWP	axis	along	polariza%on	
QWP	axis	normal	to	polariza%on 

Main	frequency	components	at νMod±νSignal and 2νMod 

✏(t) )
⇢
 (t) for QWP k
� (t) for QWP ?
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PVLAS scheme 

•  The	Fabry-Perot	cavity	will	increase	the	single	pass	
ellip9city	by	a	factor		

•  The	heterodyne	detec9on	linearizes	the	ellip9city	ψ	
to	be	measured	

•  The	rota9ng	magne9c	field	will	modulate	the	
searched	effect	

N =
2F
⇡

18

polariser	 magne%c	field	 analyser	

ψ(t) at 2νMag η(t) at νMod	

ITr	I0	
Ellip%city	modulator	

mirror	 mirror	
QWP	

IAXO	Workshop,	Frasca9,	April	2016	
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Experimental parameters 
•  Wavelength	=	1064	nm	

•  																																							T2m;								BExt	=	2.5	T,	L	=	1.6	m	

•  Magnet	rota9on	frequency	3-20	Hz	

•  Present	finesse	=	710000.	

•  Vacuum:	≈	10-8	mbar	

•  Expected	QED	ellip9city	signal:		5.4·10-11	

Z L

0

B2

Ext

dl = 10.25
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The magnets 
Total	field	integral	=	(10.25±0.06)	T2m	

Magnets	have	built	in	magne%c	shielding	
Stray	field	below	1	Gauss	on	side	

Halbach	
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Vacuum and pumping 
•  All	components	of	the	vacuum	system	and	op9cal	

mounts	made	with	non	magne%c	materials	(at	best)	

•  Vacuum	pipe	through	magnet	made	in	Pyrex	to	
avoid	eddy	currents	

•  Pyrex	pipe	externally	varnished	with	black	paint	to	
avoid	interac9on	of	scawered	light	with	magnets	

•  Baffles	inside	the	Pyrex	tubes	to	reduce	diffused	light	

•  Mo9on	of	op9cal	components	inside	vacuum	
chamber	by	means	of	piezo-motor	

•  High	vacuum	obtained	with	gewer	-	NEG	pumps	–	
noise	free,	magne%c	field	free		

Ge`er	
pumps	

Linear	translator	

Vacuum	chambers	

21IAXO	Workshop,	Frasca9,	April	2016	
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Optics layout 

2	W	NPRO	Nd:Yag	Laser	
λ	=	1064	nm	

Op9cal	table	

3.3	m	long	Fabry	Perot	cavity	

Magnet	2	 Magnet	1	

22IAXO	Workshop,	Frasca9,	April	2016	
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Cavity 
•  Fabry	Perot	cavity	high	finesse	mirrors	
•  Spherical	mirror	with		r	=	- 2	m	
•  Automa9c	locking	system	to	allow	long	

integra9on	9mes	

3-Motor	Mirror	%lter,	θx,	θy,	θz	

•  Transmiwed	power	25%	
•  Highest	measured	finesse	=	770	000			

N	=	480	000	
•  τ	=	2.7	ms	,	d	=	3.3	m,	65	Hz	FWHM	
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The mounted apparatus 

4.8 m

0.9 m
ALPHA	 BETA	
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Calibration 

25IAXO	Workshop,	Frasca9,	April	2016	
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Mirror birefringence 

26

Fabry	Perot	cavity	mirrors	have	intrinsic	sta%c	birefringence	

The	resul9ng	cavity	behaves	like	a	waveplate.	This	results	in:	
	-	cavity	mode	splidng	
	-	increased	1/f	noise?	

•  Cavity	mirrors	must	be	rotated	to	minimise	total	
birefringence	

•  Polariza9on	must	be	aligned	with	one	of	the	equivalent	
waveplate	axes.		

Cavity	mode	splidng	mixes	ellip%ci%es	with	rota%ons		
IAXO	Workshop,	Frasca9,	April	2016	
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Cavity birefringence 
•  With	He	gas	at	various	pressures	we	measured	the	ellip9city	as	a	func9on	

of	the	posi9on	on	the	Airy	curve	(feedback	offset).

•  No	dichroism	is	induced	in	He:	ε	=	0	

Offset	

Example	with	P	=	0.98	mbar	He	
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Cavity birefringence 
•  By	inser9ng	a	quarter	wave	plate	aWer	the	cavity	and	with	He	gas	at	various	

pressures,	we	also	measured	the	rota9on	as	a	func9on	of	feedback	offset	

Offset	

Example	with	P	=	0.98	mbar	He	

Error	signal	
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Measurement output 

29

Heterodyne	detec%on	technique	
(Rota%ng	Magnet)	
Measured	effect	given	by	Fourier	amplitude	
and	phase	at	signal	frequency	

Vector	in	the	polar	plane.	
Defines	physical	axis	for	any	
birefringence.	

The	amplitude	measures	the	ellip9city/rota9on	
The	phase	is	related	to	the	acquisi9on	trigger	and	
to	the	magne9c	field	direc9on	rela9ve	to	the	
polariza9on.	A	true	physical	signal	must	have	a	
definite	phase	detremined	with	gases	
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Calibration with He 
Takes	into	account	the	response	of	the	birefringent	cavity	

The	low	pressure	point	required	5	hours	of	integra9on:	apparatus	is	stable.	
It	corresponds	to	a	birefringence	∆n	=	8.6·10-21	
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Vacuum results 

31

Distribu9on	of	noise	
Rayleigh	func9on							

Spectrum	of	obtained	data	around	signal	frequency	

P(r) = N r
σψ
2 e

−
r2

2σψ
2

σψ	=	1.1	10-8 		
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Ellipticity data 

2015	Rota9on	measurement	with	QWP	

2015	Ellip9city	measurements	
without	QWP	

2014	ellip9city	data.	(PRD	90	(2014)	092003)		
	

IAXO	Workshop,	Frasca9,	April	2016	
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Birefringence – dichroism data 

IAXO	Workshop,	Frasca9,	April	2016	

•  Birefringence	and	dichroisms	for	2.5	T	

•  Unitary	birefringence		�nu =
�n

B2

Della	Valle	et	al.,	EPJ	C,	(2016)	76:24		

�n(PVLAS) = (�1.5± 3.0)⇥ 10�22

�(PVLAS) = (�1.6± 3.5)⇥ 10�22

Averages	
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PVLAS combined best value 

�n(qed)
u = 3Ae = +3.96⇥ 10�24 T�2

PVLAS	best	value:	

34

�n(vac)
u = (�24± 48)⇥ 10�24 T�2
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Della	Valle	et	al.,	EPJ	C,	(2016)	76:24		
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Axion-like particles 
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Della	Valle	et	al.,	EPJ	C,	(2016)	76:24		
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Thank you for your 
attention 
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