

IAXO X-ray optics and possible italian contributions

M.M.Civitani, S. Basso, M.Ghigo, D.Spiga, B.Salmaso, G.Pareschi, G.Vecchi **INAF – Osservatorio Astronomico di Brera - Italy**

Credits: NASA

Credits: ESA

Manufacturing techniques utilized so far

1. <u>Classical precision optical polishing and grinding</u>

Projects: Einstein, Rosat, Chandra
Advantages: superb angular resolution
Drawbacks: high mirror walls → → small number of nested
mirror shells, high mass, high cost process

2. <u>Replication</u>

Projects: EXOSAT, SAX, JET-X/Swift, XMM, ABRIXAS (→ examples follow hereafter) Advantages: good angular resolution, high mirror "nesting" the same mandrels for many modules

Drawbacks: *relatively high cost process; high mass/geom. area ratio (if Ni is used).*

3. "<u>Thin foil mirrors"</u> Projects: BBXRT, ASCA, SODART, ASTRO-E Advantages: high mirror "nesting" possibility, low mass/geom. area ratio (the foils are made of AI), cheap process Drawbacks: until now low imaging resolutions (1-3 arcmin)

Replication methods

• Ni electroforming Superpolished Mandrel replication (SAX, JET-X/Swift, XMM, • epoxy replication: SiC Gold Carrier ABRIXAS, E-Rosita...) Evaporation EXOSAT (Be), WFXT (Alumina & SiC prototypes) G SIC carrier + Superpolished Mandrel Nikel Electroforming Mandrel with Electroformed Epoxy mirror Filling Au Ni Epoxy SIC Separation of mirror from mandrel by cooling 19/04/2016 IAXO Workshop

Italian "replication by electroforming" technology has enabled almost all X-ray observatory missions of the last 20 years with high-precision nickel mirrors

19/04/2016

- 3-mirror modules with FL=3.5 m
- 27 shells with the same thickness as for NHXM (250 microns, max) - 12 mandrels already available
- diameters min=183 mm, max=400 mm
- Electroformed in Ni (or NiCo) with Ir+C coating
- Total weight of 1 MM is ~40 kg (shells 30kg, 30% structure, total for 3MM=120 kg)
- HPD : 15 arcsec

WFXT prototype 2011: direct polishing approach

Slumped Glass Optics (SGO)

X-Ray Optical Unit (XOU)

Sep. 2009

Goal of the study : To demonstrate the feasibility of large segmented X-ray optics having high angular resolution

Now

SGO: x-ray optical unit details

D263, AF32, Eagle BK7, Borofloat MasterBond EP30-02

SGO: OAB present approach

SGO: Slumping results

3D Typical shape of the last serie Eagle slumped glass

Cylinder 1m radius of curvature 200 mm x 200 mm x 0.4mm

SGO: Mould integration approach

Integration corrective capabilities

SIMULATIONS: theoretical mold + perfect integration

Integrated sample results

Integration error: 0"-5" \rightarrow TO BE IMPROVED:

- Slumping figure error
- Slumping set-up cleaning
- Integration set-up cleaning
- Integration mold figure error correction (@OAB with ion beam figuring) to reach 1-2" HEW.

Coating of segments

19/04/2016

The coating changes only low frequency shape of the glass: mid-frequencies remain un-changed

ÍNAF

Stacking concept

Mould alignment under the UPMC

Measurement repeatability of 1"

Residua with respect to wolter: Par and Hyp oriented [Micron]

INAF

SGO: Integration MAchine (IMA)

SGO: latest equipment based on deflectometry

SGO: Proof Of Concept with NASA slumped glass

- One integration mold pair, in alluminium (radius @IP of 485mm and focal length of 8.4m) by LT-Ultra. Measured quality ≈ 10" HEW
- The distance between the plates chosen for a fix rib thickness of 1.5mm (same order of the expected theoretical one for a module with this focal length and radius of curvature)
- Up to 5 different plate pairs integrated in co-aligned configuration

Cold Slumped Glass Optics

Hot slumping with active pressure to produce cylindrical glass plates

Need of flexible glass: Willow as example

Sheets	250mm x 300mm
Rolls	10m long x 300mm wide
Quantity	Development quantities

Ultra-slim flexible glass is a 50-200µm thick glass

Fusion process

CORNING

ONLY COLD INTEGRATION WITH REINFORCING RIBS

19/04/2016

Integration Machine up-grade

Integration procedure for not-modular optics

- The glass foils are integrated starting from the internal one
- The integration machine would be an updated version of our IMA used for S.G.O. (Slumped Glass Optic) prototypes

Indirect integration on IMA: JIM1 MPE SGO

Indirect slumped glass Monolithic indirect integration mold Realized 02/2015

.........Jorkshop

Willow Glass: MICRO-ROUGHNESS

→ Ideal substrate for coating application

WP0 prototype: CONFIGURATION

- Glass Material: Willow from Corning
- Plate size: 200x200x0.2mm
- Ribs: Bk7
- Backplane: alluminium
- Focal lenght = 20m
- Radius of curvature = 1m.
- Integration mold: Bk7 (used also for slumped glass for PoC2,PoC3 and Poc4 modules)
- Integrated with IMA.

INAF

WP0 prototype: PRELIMINARY RESULTS

Very promising result: → HEW ≈ 20" single reflection

Measured figure error on latest acquired samples: 200 x 200 x 0.2mm

1770 W

	HFA	LFA	
Number of telescopes	5	8+2	
Focal Length	5.5m	4.5m	
Aperture	550mm	450mm	
Envelope max diam.	<=650mm	<=550mm	
Energy range	>800 cm^2 @2-6keV >60cm^2 @30keV	0.5-10keV	
FoV	16armin	16 arcmin (8 telescopes) 12 arcmin (2 telescopes)	
Angular resolution	1 arcmin	1 arcmin (8telescopes) 15'' (2 telescopes)	
Mass	<50kg	<=40kg	

 \rightarrow To save weight: low density material as glass/graphite

 \rightarrow To save money: cost reduction of current production process

 \rightarrow To save time: process semplification

	Inner part	Outer part
Radial limit	26.3-94mm	100-223mm
NumShell	68	57
GlassWeight	≈ 1.2kg	≈7.5 Kg
GlassThickness	0.03-0.1mm	0.1-0.2mm
RangeRibThickness	≈ 0.65-1.45mm	≈ 1.6-3mm
WeightRib	≈ 1.2Kg	≈ 5Kg
19/04/2016	IAXO Workshop	

LFA: RAW cost estimation

# Oven	3
# IMA	8
# Module	8
# Shell xModule	100
# Ave shell azimutal	4,5
# Tot Glass Module	450
# Tot Glass sheet	900
# Shell integration Xday	1
# Shell slumping Xday	15
Integration Time (years) Slumping time	2,25 0,3 2,25
5-10 Meuro for LEA	2,23

Cost IMA				200000	160000
autocollimator	18000	2	36000		
hexapod	40000	1	40000		
linear encoder	5000	7	35000		
other	10000	1	10000		
partial			121000		
Cost Mandrel				1000000	100000
scale factor mandrini	4				
unitary price	5000				
# Mandrel (Par+Hyp)	50				
# mandrel for parallel usage	4				
Cost Oven				45000	4500
Oven price	15000				
# Oven	3				
Cost Ribs				54000	43200
unitary price	10				
# ave azimutal	54				
# ribs x module	5400				
Cost structure	30000			30000	24000
Cost Class	10			2000	1600
	10			2000	1000
Cost Manpower				288000	221400
Unitary price xYear	60000				
# person x oven	1		18000		
# persone x IMA	2		270000		
Cost Trasportation				100000	80000
unitart price	100000				
TOTAL COST (MEuro)				1,719	6,34

INAF

Proposed concept for XTP LFA: Nichel Vs Glass

Parts	Material	[kg]
spiders	Titanium	5.57
Internal shaft	Invar	1.92
Ribs	Graphite	6.55
Shells	Willow	6.60
mid and back planes	Borofloat33	6.58
Blades	Invar	0.64
Case	Invar	7.98
тот.		35.85
19/04/2016		

	Value
Radial limit IP	100-217 mm
NumShell	39
Shell Weight	≈29kg
Shell Thickness	0.1-0.2MM

- Trade off among different technologies for IAXO to be studied as Nikel replication still attractive
- The results obtained so far in prototypal realization based on hot/cold glass slumping process are very promising and are fully compatible with an HEW below 1arcmin.
- The cold slumping approach is an effective solution for low cheap/fast production of x-ray optics.
- Ready for collaborations in different missions as XTP /IAXO

Gravity assisted slumping

Preliminary test perfomed On glass D263, Size: 200 mm x 200 mm x 0.4 mm: → Achieved Pseudo cylindrical configuration with

[micron]

- configuration with <100Micron longitudinal error
- → Achieved radius of curvature ≈ 500mm
- → After integration expected HEW ≈ 25 " single reflection

Willow Glass: THICKNESS VARIATIONS

 \rightarrow Choosing the right direction the impact to the HEW is negligeble even if indirect integration technique is applied.