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The theta angle of the strong interactions
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Axions
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- is it a dynamical field? 
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Axions are necessarily dark matter
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Axions are necessarily dark matter
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Axions are necessarily dark matter
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~ One parameter theory

axion mass
✓(t, x) = a(t, x)/fa

ma = 6meV
109 GeV

fa

Measured today |✓| < 10�10 (strong CP problem)

- is it a dynamical field? ✓(t,x)
generated by QCD!

✓(t) = ✓0 cos(mat)



Axion dark matter

- The amount of axion DM produced depends on fa

- large fa, small curvature, oscillations start later->more DM

- small fa, large curvature, oscillations start earlier -> less DM
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- Axion DM scenarios
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Axion mass at high Temperature
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- Axion field starts to oscillate at T ~ GeV ma =

p
�

fa

To
po

lo
gi

ca
l s

us
ce

pt
ib

ili
ty

DIGA (analytical) (valid T>>Tc) 
Borsany at al PLB 2015

Lattice QCD 2+1 (T~Tc)
Bonati et al arXiv:1512.06746 

Lattice QCD (DWF) 2+1
Buchoff et al PRD 89 2014

Interacting Instanton Liquid (Model)
Wantz/Shellard PRD 82 2010
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SCENARIO I, N>1, Domain Walls stable-> cosmological disaster

SCENARIO I, N=1

a

fa
= N✓



�⇡fa ⇡fa

�⇡fa ⇡fa

SCENARIO I, N>1, break slightly degeneracy

SCENARIO I, N=1
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Excluded (too much DM) ok sub

Phase transition (N=1)
strings+unstable DW’s

- Axion DM scenarios

Axion dark matter

Initial conditions set by : 

Excluded



Excluded (too much DM) ok sub

Phase transition (N=1)
strings+unstable DW’s

- Axion DM scenarios

Excluded (too much DM) ? tuned

Phase transition (N>1)
strings+long-lived DWs

Axion dark matter

Initial conditions set by : 
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our Universe

One misalignment angle singled out
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Excluded (too much DM) ok sub

Phase transition (N=1)
strings+unstable DW’s

- Axion DM scenarios

oktuned (anthropic?) tuned
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Dark Matter
huge parameter space!
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Dark Matter
huge parameter space!
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meets 
cosmo



Detecting Axions

⇢aDM = 0.3
GeV

cm3

✓0 = 3.6⇥ 10�19



Detecting Axion (Dark Matter) in the lab

v . 300 km/s ⇠ 10�3cvelocities in the galaxy

phase space density

occupation number is HUGE! treat it like a classical coherent (NR) field
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Cavities Mirrors LC-circuit

Spin precession Atomic transitions Optical



- In a static magnetic field, the oscillating axion field generates EM-fields

B-field

- Electric fields
   
- Oscillating at a frequency

- B-fields 

(amp independent of mass!)

Axion DM in a B-field
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Radiation from a magnetised mirror

E(t) =
c�↵✓0B
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cos(mat)

In a magnetised medium

E|| = 0
Boundary conditions!
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Radiation from a magnetised mirror

E|| = 0
Boundary conditions! Emitted EM-wave
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Radiation from a magnetised mirror : Power

Emitted EM-wave
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Waves interfere constructively and resonate

Signal if tuned ma = !res

P ! P ⇥Q

- Slow scan over frequencies
- Dominated by thermal+preamp noise

Cavity experiments

- Haloscope (Sikivie 83) 
  “Amplify resonantly the EM field in a cavity”



Cavity experiments
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Cavity experiments ... and beyond
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Cavity experiments ... and beyond

Very easy, but needs 
large magnet volume!
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Cavity experiments ... and beyond

Very easy, but needs 
large magnet volume!

new ideas!



(on resonance)

- Past experiments Florida U., RBF, ADMX, CARRACK
- Future endeavors: ADMX, ADMX-HF, YMCE, CAPP
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IAXO

- Haloscope (Sikivie 83) 
  “Amplify resonantly the EM field in a cavity”

- Parameters unexplored at low and high masses: WHY? 

 Scenario II     I
Cylindrical cavity (h/r=b) like ADMX but scaled

- Signal/noise in        of time, t,�⌫a
S

N
=

P
out

P
noise

p
�⌫at

Very easy, but needs 
large magnet volume!

Very complicated, 
needs new ideas...

- Signal (V / m�3
a ) P

out

/ V ma ⇠ 1

m2

a

- Noise P
noise

= T
sys

�⌫a / m2

a

- Scanning rate 1

ma

d�ma

dt
/

c4�
m9

a

P ⇠ Q|Ea|2(V ma)G

Cavity experiments (if time)

I



Axion Dark matter experiments (target areas)

osc. EDM

MADMAX

CAPP

ADMX
ADMX-HF

QU
AX

?

LC

5th forces?

only one running



Conclusions

- Axion exists -> axion dark matter guaranteed

- 3 main scenarios -> huge DM parameter space m < meV
   
- meV frontier extremely challenging for direct detection

- Axion dark matter experiments, more and better

... But still under critical

- IAXO huge magnet could host new EXPERIMENTS



- Length = 20 m
- Magnetised radius ~ 1 m
- Peak value ~ 5.4 T
- Average in bore 2.5 T
- Available T ~ 4.5 K 
  (but warm bores in design) x[m]

field map of transverse cut 
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- Sensitivity

Big cavity 
(realistic)

Many flat (exploit the huge volume)
(very speculative, R&D needed!)

Axion DM searches with IAXO?
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8-Dish IAXOSYS

- 0.1-1 meV range is most interesting in Scenario-II

Scenario II
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- Typical Dish antenna experiments fall a bit short,
 if the DM density is just ⇢CDM = 0.3GeV/cm3

c�

ma[eV]

8-Dish IAXOQL

- Encounter with the Earth (every 104 years)
⇢CDM ⇥ 106, Qa ⇠ 109, t ⇠ 3days

- Even with a modest realistic experiment one can get a huge signal ! (if lucky...)

- S-II predicts miniclusters of axion CDM

Zurek et al 07, See also Kolb & Tkachev 94

Mmc ⇠ 10�12M�

⌦mc/⌦aCDM ⇠ O(1)

Dish antenna and miniclusters



Second END

- Axion exists -> axion dark matter guaranteed

- 3 main scenarios -> huge DM parameter space m < meV
   
- meV frontier extremely challenging for direct detection

- Axion dark matter experiments, more and better

... But still under critical

- IAXO huge magnet could host new EXPERIMENTS



do not go beyond 
this point



spherical reflecting dish

Dish antenna experiment?
The Ea-field excites surface electrons coherently
EM radiation from a reflecting surface

P ⇠ |Ea|2Adish ⇠ 10�26
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Ca�

2

◆2 Adish

1m2
Watt

Horns 2012



Large freq ... Area vs volume

P ⇠ Q|Ea|2(V ma)G

P ⇠ |Ea|2A

Q ⇠ 104 ⇠ Am2
acomparable if



Mixed scheme?

If we could add the power emitted by many mirrors...



Radiation from a dielectric interface ...

Boundary conditions!

E(t) =
c�↵✓0B
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cos(mat) E(t) =
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E||1 = E||2



Radiation from a dielectric interface ...

Emitted EM-wave

E(t) =
c�↵✓0B

2⇡✏
cos(mat) E(t) =

c�↵✓0B

2⇡
cos(mat)

Boundary conditions!
E||1 = E||2Emitted EM-wave



Many dielectrics : MADMAX at MPP Munich

Emitted EM-waves from each interface

+ internal reflections ......

- Emission has large spatial coherence; adjusting plate separation -> coherence

boost factor

- Work in progress at Max Planck Institute fur Physik (Conceptual design)
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Close to nu0, many layers
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Emitted EM-waves from each interface

+ internal reflections ......

boost factor (N=10,40,80; n=3,nu0=20 GHz)
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Outside nu0

mirror
n = 1, � n, �n
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When dielectrics are non-transparent, mild resonances appear that allow higher boosts



Comparison with cavities

Waves interfere constructively 
many times with each other

v

Mechanical tolerances amplified Many layers, Errors averaged to some extent
smaller cavity-effect contribution



Comparison with cavities, at high frequency

v
Cavities become small, 

In principle, dielectric stacks can be kept quite wide
(Area effect)



MADMAX



MADMAX
























