Axions, Dark Matter and Cosmology

Yavier Redondo (Zaragoza U & MPP)

> The Search for Axions in the Universe INFN Frascati 18-19 Aprile, 2016

The theta angle of the strong interactions

- The value of θ controls matter-antimatter differences in QCD

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Axions

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Axions are necessarily dark matter

- is it a dynamical field? $\theta(t, \mathbf{x})$

Axions are necessarily dark matter

- is it a dynamical field? $\theta(t, \mathbf{x})$

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Axions are necessarily dark matter

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

- The amount of axion DM produced depends on fa
- large fa, small curvature, oscillations start later->more DM

- small fa, large curvature, oscillations start earlier -> less DM

Theta evolution, Averaged SCENARIO I

 π

 θ

 $-\pi$

Theta evolution, Averaged SCENARIO I

Strings

- Axion DM scenarios

Axion mass at high Temperature

- Axion field starts to oscillate at T ~ GeV

 m_a

T [GeV]

Axion mass at high Temperature

SCENARIO I, N=1

SCENARIO I, N>1, Domain Walls stable-> cosmological disaster

SCENARIO I, N=1

SCENARIO I, N>1, break slightly degeneracy

Theta evolution, inflated SCENARIO I

 π

 θ

 π

One misalignment angle singled out

Theta evolution, inflated SCENARIO I

Axion dark matter $f_a[\text{GeV}]$ 10^{13} 10^{12} 10^{11} 10^{10} 10^{9} 1014 108 $10^6 \quad 10^5$ 10^{3} 107 10^{2} 104 10^{1} - Axion DM scenarios tuned (anthropic?) ok (tuned) Excluded Excluded (too much DM) sub ok **Excluded (too much DM)** ? tuned מתוור התוורי התווייי 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10³ 1 10 10² 105 10⁴ 10^{6}

 $m_a[eV]$

Initial conditions set by :

Inflation smooth

 $\Omega_{\rm aDM} h^2 \simeq \theta_I^2 \left(\frac{80\,\mu {\rm eV}}{m_a}\right)^{1.19}$

Phase transition (N=1) strings+unstable DW's

Phase transition (N>1) strings+long-lived DWs

Detecting Axions

$$\rho_{\rm aDM} = 0.3 \frac{{\rm GeV}}{{\rm cm}^3}$$

 $\theta_0 = 3.6 \times 10^{-19}$

Detecting Axion (Dark Matter) in the lab

$$\rho_{\rm CDM} \simeq 0.3 \frac{\text{GeV}}{\text{cm}^3} = m_a n_a \simeq \frac{1}{2} m_a^2 f_a^2 \theta^2 \longrightarrow \theta \sim O(10^{-19})$$
velocities in the galaxy
$$v \lesssim 300 \text{ km/s} \sim 10^{-3} c$$
phase space density
$$\frac{n_a}{\frac{4\pi p^3}{3}} \sim 10^{29} \left(\frac{\mu \text{eV}}{m_a}\right)^4$$

occupation number is HUGE! _____ treat it like a classical coherent (NR) field

Roughly...

$$a(t) = a_0 \cos(m_a t)$$

Fourier-transform a(x) $\omega \simeq m_a(1+v^2/2+...)$ $\delta\omega = \frac{m_a v^2}{2}$ $\delta t \sim \frac{1}{\delta\omega} \sim 0.13 \text{ms} \left(\frac{10^{-5} \text{eV}}{m_a}\right)$ $\delta t \sim \frac{1}{\delta\omega} \sim 0.13 \text{ms} \left(\frac{10^{-5} \text{eV}}{m_a}\right)$ $\delta t \sim \frac{1}{\delta\omega} \sim 0.13 \text{ms} \left(\frac{10^{-5} \text{eV}}{m_a}\right)$

Axion DM in a B-field

$$\mathcal{L}_I = -C_{a\gamma} \frac{\alpha}{2\pi} \frac{a}{f_a} \mathbf{B} \cdot \mathbf{E}$$

- In a static magnetic field, the oscillating axion field generates EM-fields

$$\mathcal{L}_{I} = -C_{a\gamma} \frac{\alpha}{2\pi} \theta(t) \mathbf{B}_{ext} \cdot \mathbf{E}$$
Source

- Electric fields $\mathbf{E}_a = C_{a\gamma} \frac{\alpha \mathbf{B}_{ext}}{2\pi} \theta_0 \cos(m_a t)$ (amp independent of mass!)

- Oscillating at a frequency $\omega \simeq m_a$

-B-fields $\propto \nabla \theta$ $|\mathbf{B}_a| \sim \langle v \rangle |\mathbf{E}_a|$

Radiation from a magnetised mirror

Radiation from a magnetised mirror

Radiation from a magnetised mirror : Power

Cavity experiments

ADMX-HF

ADMX-Fermilab

CARRACK (discontinued)

CAST-CAPP

Cavity experiments

Cavity experiments

Cavity experiments ... and beyond

Cavity experiments ... and beyond

Cavity experiments ... and beyond

Cavity experiments (if time)

- Haloscope (Sikivie 83) "Amplify resonantly the EM field in a cavity"

 $P \sim Q |\mathbf{E}_a|^2 (V m_a) \mathcal{G} \kappa$ (on resonance)

- Past experiments Florida U., RBF, ADMX, CARRACK - Future endeavors: ADMX, ADMX-HF, YMCE, CAPP
- Parameters unexplored at low and high masses: WHY?

Cylindrical cavity (h/r=b) like ADMX but scaled

- Signal
$$(V \propto m_a^{-3})$$
 $P_{\text{out}} \propto V m_a \sim \frac{1}{m_a^2}$
- Noise $P_{\text{noise}} = T_{\text{sys}} \Delta \nu_a \propto m_a^2$
- Signal/noise in $\Delta \nu_a$ of time, t , $\frac{S}{N} = \frac{P_{\text{out}}}{P_{\text{noise}}} \sqrt{\Delta \nu_a t}$
- Scanning rate $\frac{1}{m_a} \frac{d\Delta m_a}{dt} \propto \frac{c_\gamma^4}{m_a^9}$

- Axion exists -> axion dark matter guaranteed
- 3 main scenarios -> huge DM parameter space m < meV
- meV frontier extremely challenging for direct detection
- Axion dark matter experiments, more and better

... But still under critical

- IAXO huge magnet could host new EXPERIMENTS

Axion DM searches with IAXO?

Dish antenna and miniclusters

- Typical Dish antenna experiments fall a bit short, if the DM density is just $ho_{\rm CDM}=0.3{\rm GeV/cm^3}$
- 0.1-1 meV range is most interesting in Scenario-II
- S-II predicts miniclusters of axion CDM

$$M_{\rm mc} \sim 10^{-12} M_{\odot}$$

 $\Omega_{mc} / \Omega_{a\rm CDM} \sim O(1)$

Zurek et al 07, See also Kolb & Tkachev 94

- Encounter with the Earth (every 10⁴ years) $ho_{\rm CDM} imes 10^6, Q_a \sim 10^9, t \sim 3 {\rm days}$
- Even with a modest realistic experiment one can get a huge signal ! (if lucky...)

Second END

- Axion exists -> axion dark matter guaranteed

- 3 main scenarios -> huge DM parameter space m < meV</p>

- meV frontier extremely challenging for direct detection

- Axion dark matter experiments, more and better

... But still under critical

- IAXO huge magnet could host new EXPERIMENTS

do not go beyond this point

Dish antenna experiment?

Large freq ... Area vs volume

 $P \sim |\mathbf{E}_a|^2 A$ comparable if $Q \sim 10^4 \sim Am_a^2$ $P \sim Q |\mathbf{E}_a|^2 (V m_a) \mathcal{G} \kappa$

Mixed scheme?

If we could add the power emitted by many mirrors...

Radiation from a dielectric interface ...

Radiation from a dielectric interface ...

Many dielectrics : MADMAX at MPP Munich

- Emission has large spatial coherence; adjusting plate separation -> coherence

$$\frac{P}{Area} \sim 2 \times 10^{-27} \frac{W}{m^2} \left(c_{\gamma} \frac{B_{||}}{10T} \right)^2 \left(\times \beta^2(\omega) \text{ boost factor} \right)$$

- Work in progress at Max Planck Institute fur Physik (Conceptual design)

One dielectric

Close to nu0, many layers

boost factor (N=10,40,80; n=3,nu0=20 GHz)

Outside nu0

When dielectrics are non-transparent, mild resonances appear that allow higher boosts

Comparison with cavities

Mechanical tolerances amplified

Many layers, Errors averaged to some extent smaller cavity-effect contribution

Comparison with cavities, at high frequency

Cavities become small,

In principle, dielectric stacks can be kept quite wide (Area effect)

MADMAX

A new QCD Dark Matter Axion search using a dielectric resonant cavity

A. Caldwell, C. Gooch, A. Hambarzumjan, <u>B. Majorovits</u>, A. Millar, G. Raffelt, J. Redondo, O. Reimann, F. Simon, F. Steffen MPI f
ür Physik, M
ünchen, Germany

> J. Redondo University of Zaragoza, Spain

- Recap: Axion to photon conversion at surfaces
 - · The open cavity idea
 - Simulations of boost factor and transmission
 - Seed project at MPP
 - Proposed design for final experiment, plans

Experimental idea

Chose dielectric material:

- High dielectric constant (for large axion/photon conversion factor)
 - Low loss \rightarrow low tan δ (in order to reduce photon loss)
 - Stable

Cheap

 \rightarrow Sapphire (Al₂O₃) @23 C, 10 GHz:

$$\varepsilon_{\perp} = 9.35; \tan \delta_{\perp} = 3.10^{-5}$$

 $\varepsilon_{=} = 11.53; \tan \delta_{\perp} = 8.6.10^{-5}$

First simulations: the boost factor

It is possible to adjust disc setting to reach sizeable β over broad bandwidth

Bandwidth per setting: ~250MHz Precision of placement of high ε plates needed: ~few μm

A

First measurements: transmission

Boost factor is coupled to transmission behavior

- 5 AIO₃ discs with diameter 100mm positioned within uncertaintiy ~ 1mm
 - Disc positions determine

transmission, reflection and boost factor (B) curves

Prediction (red) fits measurement (black) well.

→ Verification of boost by transmission measurement!

xcellence Cluster Universe -

one Conference with Saclay Magnet Group, Feb. 23 2016

First measurements: sensitivity

Inject fake axion signal with 3.10-21 W power

- Mesurement for one week (integrate signal): Receiver at Room Temp.
 - → Independent "blind" analysis
 - → found > 6σ signal succesfully

→ At LHe: noise level factor 100 better

→ Sensitivity at the level of 10⁻²³ W expected

Excellence Cluster Univers

one Conference with Saclay Magnet Group, Feb. 23 2016

B. Majorovits

First prototype setup at MPI

Phone Conference with Saclay Magnet Group, Feb. 23 2016

First prototype setup at MPI

Phone Conference with Saclay Magnet Group, Feb. 23 2016

B. Majorovits

First prototype setup at MPI

Prototype setup partly funded as seed project by:

Excellence Cluster Universe

- Test correlation btw. transmission and boost factor
- Test needed disc prescision
- Evaluate uncertainties
- R&D on tiling

Phone Conference with Saclay Magnet Group, Feb. 23 2016

Further plans

2016:

- Finish first test measurements at room temperature at MPI
- Test noise of preamplifier at LHe temperature
- Find additional collaborators for specific parts of project
- Start design of 10T magnet
- Develope technique to cover frequencies above 30 GHz
- R&D on production of large diameter high-ε discs

2017-2020:

- Demonstrate low noise performance, operation with many discs, scalability to 1m diameter, work in ~10 T environment
- Build prototype with preamp in LHe in cryostat and resonator in magnetic field

2020:

Start building full scale experiment

