A D F A B F A B F A B F

Transmission VPHGS in Silver Halide Sensitized Gelatin

Maider Insausti, Francisco Garzón, P. Mas-Abellán, R. Madrigal,³ A. Fimia³

¹Instituto de Astrofísica de Canarias, E-38200, La Laguna (S.C Tenerife), Spain

²Dpto de Astrofisica, Universidad de La Laguna, E-38206, La Laguna (S.C Tenerife), Spain²

³Universidad Miguel Hernández, Dpto Ciencia de Materiales, Óptica y Tecnología Electrónica, Avd de la Universidad s/n, Elche, Spain;

October-2017

<ロト <回ト < 注ト < 注ト

Contents

- Introduction.
- Holographic Recording Materials.
- SHSG Processing.
- Experimental Results.
- Future Work

<ロト <回ト < 注ト < 注ト

BACKGROUND

Holography Recording Materials

- Silver halide Emulsions \Rightarrow Bleached process.
- DCG.
- SHSG
- Photopolymers
- SOL-GEL

DCG

- Thin Layer $3 30 \, \mu m$
- Diffraction efficiency tuned by incident angle.
- Spatial frequency up 6000 I/mm
- No pupil effect in optical systems.
- Large sizes (500 mm)
- Multiplexed gratings.
- Focalized gratings.
- Mass production by copy. (even with partialy coherent light).

- Wet processing.
- Spectral sensitivity < 530 nm
- Energetic Sensitivity $\approx 100-200~mJ/cm^2$
- Low scattering.
- Good surface uniformity
- Thickness 3 300 μm
- $\nu > 6000 \ {\rm I}/{\rm mm}$

Photopolymers

- Dry processing.
- Spectral sensitivity: Panchromatic.
- Energetic sensitivity: 50 mJ/cm^2
- Low scattering.
- Good surface uniformity.
- Thickness: pprox 70 100 μ m.
- $\nu < 6000 \ {\rm I}/{\rm mm}$

- Wet processing
- Spectral sensitivity: Panchromatic.
- Low Scattering.
- Good surface uniformity.
- Thickness 5 9 μm
- $\nu > 6000 I/mm$

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Processing Procedure

Step	
1	Develop for 8 minutes AAC
2	Rinse in running water for 1 minute
3	Bleached in R-10 solution for 60 seconds after the plates has cleared
4	Rinse in running water for 5 minutes
5	Stop during 1 week
6	Rinse in running water for 2 minutes
7	Soak in fixer F-24 for 4 minutes
8	Wash in running water for 20 minutes
9	Dehydrated in 50 % isopropanol for 3 minutes
10	Dehydrated in 90 % isopropanol for 3 minutes
11	Dehydrated in 100 % isopropanol for 3 minutes
12	Dry in Vacuum Chamber

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Processing Solutions

Developer Formula					
Ascorbic Acid	20 g				
Sodium Carbonate	120 g				
Distilled water	1000 ml				
Bleached Formula					
Dichromate Potassium	2 g				
Sulfuric Acid	10 ml				
Potassium bromide	92 g				
Distilled water	1000 ml				

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Historical evolution of photochemical process in SHSG

Authors	Plate	Photochemical model	Year
Pennigton, Chang, Graver	Kodak 649F	Hardening	1971-1980
Hariharan	Kodak 649F	Hardening(Developed)	1986
Boj, Fimia, Quintana	Agfa Gevart 8E75HD	Hardening	1986
Fimia, Pascual, Belendez	Agfa Gevart 8E75HD	Hardening	1988
V Weiss, Friessen	Kodak 649F	Microcavities	1988
Usanov	PFG03	Microcavities	1990
Beledenz, Neipp, Pascual	BB640, PFG01	Hardening	1998-2000
Kim, Phillips, Bjelkhagen	PFG03, PFG01	Microvoids	2001-2002

Photochemical model of latent image formation

ヘロン ヘロン ヘビン ヘビン

Сору

- Transmittance.
- Low Scattering.
- All Wavelength.

Volume Phase Relations

Half- maximun of the efficiency bandwidth (FWHM)

(2004)

(日) (同) (日) (日)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Gratings Evaluation

Tunning parameter

$$P_t = \frac{\Delta n \cdot d}{n \cdot \Lambda}$$

The diffraction efficiency variations with Bragg Angle.

$$n \cdot \Lambda \longrightarrow \alpha, \lambda$$

 $\Delta n \cdot d \longrightarrow$ Modulation in the photosensible material

・ロト ・日本 ・日本 ・日本

Geometry

Problems			
Symmetric Asymmetric =	\Rightarrow	Shrinkage ↓ Control	\rightarrow Photochemical processing
		control	

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

High Energetic Sensitivity in SHSG

$$\begin{array}{c}
\downarrow \\
E = I \cdot t \\
\downarrow \\
\downarrow \\
\text{Mechanical stability} \\
\text{High Size} \approx 300 \ mm
\end{array}$$

Experimental Results

Plate characteristic

The plate was BB640, ultrafine grain emulsions with a nominal thickness of 9 μ m. The recording was performed with asymmetric geometry a 30⁰ degrees between the light beams of wavelength 632.8 nm (He-Ne laser), which give a raise a spectral frequency of 800 l/m. The exposure was between 46 to 2048 μ J/cm².

Introduction

VPHG Evaluation

Experimental Results

(日)

Future work

SHSG Emulsions (Cryogenic Process).

Figure: Diffraction efficiency as function of reconstructed wavelength. Energy=46, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, and 2048 $\mu J/cm^2$

SHSG Emulsions

Diffraction efficiency for SHSG as function of energy before and after cryogenic

process measured at 540 nm

Bleached Emulsions (Cryogenic Process).

Diffraction efficiency as function of reconstructed wavelength. Energy=46, 64, 96 128, 192, 256, 384, 512, 768, 1024, 1536, and 2048 $\mu J/cm^2$

SHSG Emulsions (Cryogenic Process).

Diffraction efficiency as function of reconstructed wavelength. Energy=46, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, and 2048 $\mu J/cm^2$

(e) Red Wavelength

(f) Green Wavelength

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Holographic Reflection Gratings ($20 \times 25 cm$)

THANKS FOR YOUR ATTENTION

