Blazed Gratings on Convex Substrates for High Throughput Spectrographs

Igor Zhurminsky^a, Christian Schneider^a, Sören Fricke^a, Marc Schnieper^a, Fabian Lütolf^a, Frédéric Zamkotsian^b

^a CSEM Muttenz Center, Switzerland

^b Laboratoire d'Astrophysique de Marseille, France

BATMAN for Galileo Telescope

- Next-generation infrared astronomical instrumentation for ground-based and space telescopes will be presumably based on MOEMS programmable slit masks for multi-object spectroscopy (MOS)
- This astronomical technique is used extensively to investigate the formation and evolution of galaxies as well as stellar physics

BATMAN for Galileo Telescope

- A multi-object spectroscopy instrument called BATMAN using a Digital-Micromirror-Device will be mounted on the Galileo telescope
- A two-arm instrument has been designed for providing simultaneous imaging and spectroscopic capabilities.

Grating Application

- A convex grating is a key element in the compact spectrograph
- Blazing of the grating is performed to maximize the light intensity in **1**st order of diffraction
- The spectrograph is a part of the MOS instrument under development, which will be mounted on the Galileo
 telescope.
 Convex grating

Grating Specification

- Reflective grating blazed in the 1st order of diffraction (p = 3300 nm, α = 5.04°) on a convex substrate
- Radius of curvature = 225 mm; footprint diameter = 63.5 mm
- The blaze is optimized at λ = 580 nm within the spectral range of 400 800 nm

Rectangular Grating on Flat Surface

- Chromium mask with a 3300 nm period grating on a Quartz substrate was used as a master for further UV replications:
 - o 120nm Cr thickness
 - Duty Cycle: 30(Cr)/70(Quartz).

Blazed Grating on a Flat Substrate

- The rectangular grating was UV replicated twice using Sol-Gel material to keep the respective profile polarity
- Conversion into a blazed shape has been reached by angular Ar ion etching of the Sol-Gel material
- The specified blazed grating parameters have been obtained by adjusting the initial grating depth in Sol-Gel as well as the Ar etching angle and duration.

Fabrication of Master Grating

- Origination of the **blazed master grating** on a flat substrate by **angular Ar ion etching** starting from a rectangular grating with a period of 3300 nm
- The designed blazed grating parameters (depth and blaze angle) was reached by adjusting the initial grating depth as well as the Ar etching angle and duration

Blazed Grating Transfer: from Flat to Convex. Step 1.

• Step 1: 1st Replication.

Blazed Grating Transfer: from Flat to Convex: Steps 2, 3, 4

- Step 2: 2nd replication
- Step 3: Ar angle etching
- Step 4: Flexible stamp

Blazed Grating Transfer: from Flat to Convex: Steps 1 - 4

- Start point: Cr mask
- Step 1, 2: replications of original grating
- Step 3: Ar angle etching
- Step 4: Flexible stamp

Blazed Grating Transfer onto a Convex Substrate

- Flexible stamp was generated by UV replication of the blazed grating from the flat surface, utilizing a flexible nanoimprint material
- Flexible stamp was used to emboss Sol-Gel preliminary spin-coated on the convex substrate
- The final component is a convex substrate with a Sol-Gel layer carrying the grating structure.

Blazed Grating Transfer into a Convex Substrate

- Flexible stamp was used to emboss a thin layer of nanoimprint material spin-coated on the convex surface
- Nanoimprint material was used as a masking layer for Reactive Ion Etching of the convex substrate
- Replicated blazed grating was transferred into the volume of glass substrate by Reactive Ion Etching etching.

••

Blazed Grating on a Flat Substrate: Optimization cycle

Blazed Grating on a Flat Substrate: parameters adaptation

Blazed Grating from Flat to Convex Substrate

Blazed Grating on a Convex Substrate

Conclusions

Blazed Grating on a Convex Substrate

- Blazed grating on a convex surface has been successfully realized for next generation compact and highly efficient spectrographs
- Monolithic approach is considered more preferable due to the absence of a glass to Sol-Gel interface prone to fatigue
- Blazed grating on convex substrates has been sent for a silver and protective layer depositions. Upon receiving samples will be measured by SEM at CSEM and optical performance measured on specific bench at LAM

Thank you for your attention!

