Spectrometer gratings based on direct-write e-beam lithography

U.D. Zeitner, T. Flügel-Paul, T. Harzendorf, M. Heusinger, E.-B. Kley

Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena, Germany

10. October 2017

Electron-beam lithography for grating fabrication

- Examples of astro-gratings:
 - CUBES UV-transmission grating
 - CarbonSat high-resolution gratings
 - > Sub- λ structures for ultra-wide-band gratings

High Performance Applications of Gratings

Spectrometers for Astronomy and Earth Observation

Manipulation/Compression of Ultra-Short Laser Pulses

relevant parameters:

- spectral dispersion
- bandwidth
- efficiency / polarization
- > wavefront
- straylight
- ➢ size, …

often extreme demands to obtain required performance

Grating Technology at the IOF

- 1. Resist exposure with e-beam lithography
- 2. Resist development

- 3. Chromium etching (RIE)
- 4. Deep etching into substrate (ICP)
- 5. Removal of Cr-layer

Gratings on dielectric layer stacks

- highly efficient reflection gratings
- transmission gratings with tailored polarization properties

The Vistec SB350 OS e-beam writer

Key Performance: Writing Accuracy

Accuracy of writing process: straylight

Optimization of e-beam writing process

Examples of realized spectrometer gratings

CUBES – UV Transmission Grating

- CUBES (Cassegrain U-Band Brazilian ESO-Spectrograph)
- > Requirements:
 - spectral band: 300nm 400nm
 - line density: 3448 lines/mm \rightarrow p=290nm
 - AOI: 31°
 - grating size: 250 x 250 mm²; mosaic of 2x [250mm x 130mm]
- Challenges:
 - commercial VPH gratings difficult in the UV
- Solution:
 - Binary fused silica gratings

ESO Cubes Spectrometer

Friedrich-Schiller-Universität Jena

Atomic-Layer-Deposition (ALD)

- surface activated chemical reactions
- conformal overcoating of surface reliefs
- large number of materials possible, e.g. TiO_2 , Ta_2O_5 , Al_2O_3 , HfO_2 ...

CUBES – UV Transmission Grating

realized grating during efficiency measurement

grating size: 250mm x 130mm

Tiling for Larger Gratings

active alignment for wave-front optimization

→ also possible for transmission gratings

arrangement of 2 reflection gratings (420mm x 210mm)

Carbon Monitoring Satellite (CarbonSat)

instrument concept:

Parameter	NIR	SWIR-1
wavelength	747nm 773nm	1590nm 1675nm
grating period	423nm	991nm
angle of incidence to the grating (equivalent in air)	63.6°	55.5°
mean angle of diffraction	Transmission Gratings in -1. order Littrow configuration	
Angular dispersion	0.3° / nm	0.1°/nm
polarization avg. efficiency	>70%	>70%
polarization sensitivity	<10%	<10%

NIR – High Resolution Transmission Grating

NIR – High Resolution Transmission Grating

use high-refractive-index (dielectric) coating to reduce depth

Direct Glass-to-Glass Bonding

Advantages: adhesive free glass-to-glass connection no additional optical interface

- achieved alignment accuracy: 0.25mrad (< 1 arcmin)
- bond strength up to 2/3 of bulk fused silica
- current TRL: 6

Wide-Band Gratings

- typical requirements for a low-resolution, broad-band disperser
 - spectral range: several 100nm
 - AOI: near-perpendicular incidence
 - period: few µm

 blazed-grating in low order (saw-tooth profile)

Echelle or Echellette Structures

"Blaze Angle" can be adjusted by crystalline orientation of Silicon substrate

Echelle or Echellette Structures

Alternative: Effective Index Gratings

Effective Medium Gratings

FLEX (fluorescence explorer); [500nm – 800nm]

GAIA (global astrometic interferometer for astrophysics); [750nm – 800nm]

Wide-Band Reflection Grating

- typical requirements
 - based on a concave grating
 - spectral range: **340nm 1050nm**

- AOI: 0.5°
- period: 30µm

Wide-Band Reflection Grating ...

... realized by E-beam lithography

\rightarrow very weak spectral dependency of diffraction efficiency

Summary

• Direct write electron-beam lithography has a huge potential for the realization of high-performance gratings

Sub-period engineering by combining E-Beam lithography and Atomic-Layer-Deposition

To make use of the large flexibility and the advantageous optical properties requires talking with the grating manufacturer already during the design of the instrument !!! (not after PDR...)

- Examples are:
 - high resolution gratings with low polarization sensitivity
 - echelle-type gratings with integrated cross-disperse
 - ultra-wide-band gratings for lower resolution spectrometers

