Ernesto Oliva, INAF-Arcetri (Florence)

- Why do astronomers need large gratings?
- Which type of gratings do astronomers need?
- Which (new) gratings-manufacturing technology could be useful to astronomers?

Fundamental physics: energy/throughput/etendue conservation

$$A\Omega$$
 = constant
($D_x \theta_x$) ($D_y \theta_y$) = constant

 $R = \lambda / \Delta \lambda$ is the resolving power of the spectrometer

Diameter of the largest ELT telescope

Typical value of resolving power needed

Meter size gratings!!

1" is the typical object size without adaptive optics (seeing limited) No large enough gratings? \rightarrow narrower slit + slice/dice the light

$$R = 10^4 \left(\frac{L_{grating}}{1.0 \text{ m}}\right) \left(\sin \theta_{grating}\right) \left(\frac{D_{tel}}{40 \text{ m}}\right)^{-1} \left(\frac{\theta_{slit}}{1.0 \text{ m}}\right)^{-1}$$

Different grating types, same size

E. Oliva @ Dispersing Elements for Astronomy

Different grating types, same size

$$R = 10^{4} \left(n_{grating} \right) \left(\frac{L_{grating}}{1.0 \text{ m}} \right) \left(\sin \theta_{grating} \right) \left(\frac{D_{tel}}{40 \text{ m}} \right)^{-1} \left(\frac{\theta_{slit}}{1.0 \text{ m}} \right)^{-1}$$

May gain up to a factor of 3 (Si) or 4 (Ge), limits on size/uniformity

E. Oliva @ Dispersing Elements for Astronomy

May gain up to a factor of 3 (Si) or 4 (Ge), limits on size/uniformity

Grism (prism-grating, no deviation at blaze)

$$R = 10^{4} \left(\frac{n_{grating} - 1}{2} \right) \left(\frac{L_{grating}}{1.0 \text{ m}} \right) \left(\sin \theta_{grating} \right) \left(\frac{D_{tel}}{40 \text{ m}} \right)^{-1} \left(\frac{\theta_{slit}}{1.0 \text{ m}} \right)^{-1}$$
No gain in size even using Ge (n=4)

Ernesto Oliva, INAF-Arcetri (Florence)

- Why do astronomers need large gratings?
- Which type of gratings do astronomers need?
- Which (new) gratings-manufacturing technology could be useful to astronomers?

Two main classes of spectrometers for ground based telescopes.

A. many apertures/objects at moderate spectral resolution (*R*~10³-10⁴), moderate (<1 octave) spectral coverage per disperser
 → gratings working in first order.

B. few apertures/objects at high spectral resolution (*R*~10⁵), very large (>1 octave) spectral coverage per disperser
 → gratings working at high orders (echelle).

Type A disperser: many apertures \rightarrow long slit \rightarrow large input angles on disperser \rightarrow much easier with transmission gratings

Representative range of parameters for large type-A gratings	
Grating type	Transmission, first order
Wavelength (nm)	350–2000 (300–2500)
Grooves spacing (II/mm)	200 – 3000
Grating angle (deg)	10-50(60)
Configuration	out-of-Littrow by several deg(*)
Efficiency	as high as possible (non polarized)
Spectral wings(**)	as low as possible

(*) To avoid Littrow ghosts(**) Within a few arc-min of the peak

Type B disperser: few apertures \rightarrow short slit \rightarrow small input angles on disperser \rightarrow easy with reflection gratings

IMPORTANT: it needs type A gratings for cross-dispersion (!)

Representative range of parameters for large type-B gratings	
Grating type	Reflection, order>60 (echelle)
Wavelength (nm)	350–2000 (300–2500)
Grooves spacing (II/mm)	10-70
Grating angle (deg)	76 (R4)
Configuration	quasi-Littrow(*)
Efficiency	as high as possible (non polarized)
Spectral/Rowland ghosts	as low as possible

(*) Off-axis ~0.5 deg perpendicular to dispersion

Ernesto Oliva, INAF-Arcetri (Florence)

- Why do astronomers need large gratings?
- Which type of gratings do astronomers need?
- Which (new) gratings-manufacturing technology could be useful to astronomers?

Most popular type-A gratings among astronomers: VPH Typical limit adopted in the design: grooves length=280 mm (Kosi) Larger gratings possible with mosaics

Apogee-SDSS grating *blog.sdss.org*

- New(?) technology: fused-silica transmission gratings.
- Binary profile directly etched on glass.
- Very high efficiencies for angles 30-50 deg
- Extensively used for telecom; relatively small gratings

- Improvement on fused-silica transmission gratings technology?
- High efficiencies at angles >50 deg with special coating of grooves
- High efficiencies at angles <30 deg with complex grooves pattern

GAIA grating iof.fraunhofer.de

Large size fused-silica transmission gratings for high power lasers. Adaptable to astronomers wishes?

Type-B gratings (echelle) are old friends of astronomers. Classic replica of ruled gratings with maximum length of 400 mm Larger gratings possible with mosaics

ESPRESSO grating mosaic L=1.2 m eso.org

- Type-B gratings (echelle) coarser than ~30 gr/mm are missing, practical problems with direct ruling of such deep grooves.
- Coarse gratings with superb profiles easy with anamorphic etching on Silicon, max size of Si grating ~ max size of Si wafer ~ 0.4 m (?)
- A master grating of Si replicated using standard technologies? (??)

Anamorphic etched grating on Silicon, courtesy of IOF

Examples of seeing-limited HR spectrometers designs

Very similar, mostly imposed by market.

L=1.2 m echelle

Examples of seeing-limited HR spectrometers designs

ELT HR spectrometer: a double-espresso L=1.6m echelle

Examples of seeing-limited HR spectrometers designs

Instructive example of classical design scaled up to ELT sizes

