FreeForm Gratings for Imaging Spectrometers

V. Moreau¹ A.Z. Marchi² B. Borguet¹

> Dispersing element for astronomy : New trends and Possibilities Milano, October 9-11, 2017

¹ AMOS, Liege Science Park, Rue des Chasseurs Ardennais, 4031 Angleur, Belgium, vincent.moreau@amos.be ² ESA/ESTEC, Keplerlaan 1, 2201 AG Noordwijk, The Netherlands,

Turn-key Telescopes

PanStarrs Survey Telescope

1,8 m Telescope IfA - Hawaii

2

OAJ: Javalambre Observatory

Devastal Optical Telescope

3,6 m Telescope ARIES Nainital

Large opto-mechanical sub-systems

Auxillary Telescopes System for VLTi (ESO)

Adapter/Rotator for VLT (ESO)

Primary Mirror Cell for DKIST

Sub-systems studies

for E-ELT

Interferometric Telescopes for MRO

Astronomy Optics

o Polishing capabilities for complex large optics up to 3 meters

Space Optics

These equipments are flying on board satellites, probes or the Space Shuttle. They are mainly instruments, mirrors, mounts, telescopes, structures or mechanisms.

Ceramic Mirrors

DM3 Satellite (for SSTL)

Tropomi (Sentinel 5 precursor)

GAIA

Silicon Carbide Mirrors

Dutch Space

an EADS Astrium company

SATELLITE TECHNOLOGY LTD

Free Form Optics

" Freeform Optics is not just an Evolution, It's a Revolution"

J. Rolland, Director of Center for Freeform Optics, Rochester NY

Freeform Optics = surfaces without rotational symmetry

Coaxial design

- •On-axis
- Obscuration
- Narrow Field-of-view

Coaxial design

- •Off-axis
- •No Obscuration
- •Large Field-of-view

Freeform

Free orientation of optics Free position of image No obscuration Large Field-of-view 3D-configurations possible Much more compact

Imaging spectrometers

Original question (ESA 2013)

Is it possible to improve Hyperspectral Imager with a freeform grating?

subsidiary issue

Is it possible to manufacture it?

"The technology of ruling a grating on a convex freeform surface has not yet been demonstrated to our knowledge, but is an active research area".

In Light: Science & Applications (July 2017) "Freeform spectrometer enabling increased compactness", J. Reimers, A. Bauer, K. P. Thompson and J. P. Rolland.

7

Freeform Grating Spectrometer

8

Free Form Grating = Significant improvement of performances

Optical performance	ELOIS spectrometer
Image F#	2.5
Entrance slit	60 mm x 30 µm
Image	30 mm (spatial) x 2.7 mm (spectral)
Grating frequency	104 lp/mm
Spectral range	400-1000 nm
Spectral sampling	2.5 nm
Keystone	1.1 µm
Smile	1.9 µm
Global size	116 x 145 x 130 mm (with folding)

Free Form Grating Manufacturing

Machined on NiP-plated Aluminum blank with a 5 axis ultra-precision lathe using a sharp edge diamond tool. Blaze angle is following the normal to the surface (-6° -> 6°)

Nominal Shape

Mirror turning : 50 nm rms SFE

Grating ruling: 57 nm rms SFE

Diffraction efficiency

o Maximum diffraction efficiency of 85% is measured at 633 nm

0

y-axis (profile width, µm)

Grating Roughness

Identification of Ghost origin

- Analysis of groove to groove spacing on a microscope image of the grating
- Evidence of a periodic error in groove spacing

Grating Roughness

o But perseverance finally paid...

Notable reduction of Ghost (<10⁻³) and grass (<10⁻⁵) Low Scattering (<10⁻⁷) -> correspond to Rq=3.5 nm rms

ELOIS: Breadboard Performances

TEST SETUP

First results from breadboard tests

Initial results : Test of the Breadboard in front of a Xenon arc Lamp

Hyperspectral Image acquisition : Vegetation Samples

New perspectives : CHIMA - High Spectral resolution instrument

- Holographic FreeForm Grating 0 Spectro-Imager
 - Demagnification factor of 3 0
 - All Reflective design Full aluminum -0 Athermal
 - Spectral Resolution R~4000 (0.16 nm)
 - Spectral Bandwidth 0.5 nm
 - Long slit (60 mm)
 - Excellent imaging prop. (MTF > 0.5)
 - High SNR (> 1000)
 - Compactness (20x20x40 cm³)

1000 lp/mm Freeform replicated grating

esa

New perspectives : Multi-blazed Gratings

<mark>ک 0.6</mark>

Ě 0.4

0.5

0.3

0.2

1000

1500

2000

1 0.1

Measured profile

Optical performance	Chandrayaan II gratings
Grating frequency	20 lp/mm
Spectral range	700-5000 nm
Shape	Spherical convex
Multi-blazed	9 blaze angles

Efficiency for TM polarized light

Efficiency for non polarized light

Efficiency for TE polarized light

4000

4500

5000

इसर

15ro

2500 3000 3500 Wavelength, nm

Minimum required

Typical roughness ~ 4nm RMS

Typical grating SFE ~ 30nm RMS

19

New Perspectives : ELOIS VNIR/SWIR

Multi-Blazed Freeform grating for combined VNIR/SWIR
Spectrometer with Splitted-orders

New Perspectives : ELOIS VNIR/SWIR

Requirement	Performance
Spectral range	400-2450 nm
Ground sampling distance (@650 km)	35 m
Swath width	70 km
Mass	40 kg
Volume	550 x 650 x 450 mm ³
Number of bands	210
Spectral FWHM	<12 nm (uniform over range)
MTF	>0.3
SNR at 0.3 albedo	
VIS	> 400
NIR	>250
SWIR	> 100
Radiance accuracy	> 95%
Polarisation sensitivity	<3% absolute, 2% between bands
Out of band rejection	<1%

Conclusions

- Innovative non-symmetrical Offner Imaging spectrometer 0 with large demagnification have been successfully designed by introducing Freeform Grating.
 - -> Improved SNR 0
 - -> Compact design 0
 - -> Longer Slit (=FoV/Sampling ratio) 0
 - -> Smaller detector pixels 0
- Ultra-accurate single point diamond machining is a key 0 technology for manufacturing FFO systems:
 - For low resolutions grating (<150 lp/mm), it offers new degrees of freedom :, 0 Complex shapes, Multi-blazed, variable period...
- Through the tests of a functional breadboard, we Ο demonstrate the perfect control of the complete process chain for freeform grating and instrument, from design to manufacturing & calibration.

Thank You !

Acknowledgments :

Coralie De Clercq (AMOS) Arnaud Cotel (Horiba-Jobin-Yvon) Luca Maresi (ESA) Atul Deep (ESA) Michael François (ESA) Yvan Stockman (CSL)