

Infrared transmission gratings manufactured using ultrafast laser inscription

David Lee and Colin Cunningham, STFC, UK ATC. David MacLachlan and Robert Thomson, Heriot-Watt University. Helen Butcher, Richard Brownsword, and Damien Weidmann, STFC, RAL Space.

Introduction

- Scientific motivation.
- Overview of Ultrafast Laser Inscription (ULI).
- Advantages of laser inscription.
- Near-Infrared transmission gratings.
- Mid-Infrared transmission gratings.
- Summary and Conclusions.

Scientific Motivation

- There is a scientific need for high efficiency transmission gratings that operate at wavelengths above 2.5 μm:
 - Mid-Infrared astronomy.
 - Earth observation.

- Remote sensing.
- Transmission gratings can provide a more compact optical layout than using mid-infrared reflection gratings.
- Ultrafast Laser Inscription is used for manufacture of near and mid-infrared photonics in a variety of materials.

Ultrafast Laser Inscription

High peak power laser is focussed within the material.

Refractive index is permanently modified near the focus.

Material is translated to create photonics structures such as grating lines.

> Science & Technology Facilities Council

Grating generation using raster pattern

Ultrafast Laser Inscription of a Grating

Ultrafast Laser Inscription of a Grating

Ultrafast Laser Inscription of a Grating

ULI – Advantages

- Gratings can be made in many different materials.
- Laser inscription enables complex custom grating shapes, for example non-straight lines or slanted profiles.
- A number of photonics structures can be combined within a single substrate.
- High efficiency.
- Very Robust.

Photonics Devices

Example ULI fabricated integrated photonic lanterns for multimode-to single mode conversion Reference: R. R. Thomson, et al, Opt. Express **19**, 5698-5705 (2011)

Near-Infrared ULI Gratings

Magnified View of Grating Structure

Near-Infrared Efficiency Results

Mid-Infrared ULI Gratings

Infrared Efficiency in Littrow

Glass transmittance is 67% (un-coated)

Mid-Infrared FTS Measurements

Theoretical Mid-Infrared Efficiency

Mid-Infrared Efficiency Results

First order diffraction efficiency is ~50%

Summary and Conclusions

- Ultrafast Laser Inscription has been successfully used in two materials to manufacture prototype near-infrared and mid-infrared transmission gratings.
- Gratings exhibit high first order efficiency.

- Theoretical modelling indicates minimal efficiency variation with polarisation.
- Tuning the width of the inscribed region changes the high order efficiency.
- Promising results so far but significant development needed to make large astronomical gratings.

