New opportunities of freeform gratings using diamond machining

Dispersing elements for Astronomy: new trends and possibilities – 11/10/17

Cyril Bourgenot – Ariadna Calcines – Ray Sharples

Plan of the talk

- Introduction on diamond machining
- Advantages and limitations of this technique
- Integrated gratings imaging spectrograph
- Overview of elliptical gratings
- Characterisation of diamond machined gratings through a project funded by CEOI

5 Axis diamond turning machines

Basic Specification

- 5-Axis Configuration (X, Y, Z, B, C)
 - Workpiece Capacity : Φ 600mm
 - Travel X:350mm, Y:150mm,Z:300mm
- Granite Base with passive air isolation
- Programming Resolution 1nm - Linear Axes
 0.036 arcsecs - C-axis
 0.02 arcsecs - B-Axis
- Feedback Resolution 0.034nm on linear axes

Advantages and limitations of

diamond machining

- Machining in its functional orientation and position
- Blanks can be pre-machined in all sort of shape
- Full control of the groove profile :
 - Echelle grating
 - Multi blaze structure
 - Variably spaced grooves
- improved thermal performance of metal optics at cryogenic temperatures : new type of ultrafine aluminium alloys
- Large sag, steep slope
- Quick set up and program, cost effective
- Tool wear, inducing variations in the groove's shape
- Thermal variation during machining => long machining time

RSA 6061 T6

Melt Spinning – Microstructure

Conventional

- · Better cosmetic appearance

- Ultra smooth surface where post polishing is not required.
- In the best cutting _ conditions, roughness can be as low as 1nm RA.

Grating specification

- Max size : ~250mm x 140mm (along the groove direction)
- Frequency : typical 100 lines/mm up to 1000 lines/mm (depending on grating size)
- Material : metallic substrate
 - standard aluminium 6061 T6
 - Melted spun aluminium alloy from RSP (RSA 6061 T6, RSA 443)
 - Brass, coper
 - Nickel plated metal

4 axis of the machine are used at the same time:

- X,Y,Z => for ruling the grooves on the freeform surface
- B axis => rotation of the tool for keeping the blaze angle constant when the gradient changes

Multi blaze

Dual Blaze

- Frequency : 10 microns
- Input angle : 3°
- Diffraction order : +1

R. Casini and P. G. Nelson, "On the intensity distribution function of blazed reflective diffraction gratings," J Opt Soc Am A Opt Image Sci Vis, vol. 31, no. 10, pp. 2179–2184, 2014.

Linear variation frequency

Design of elliptical gratings

				slicer dimensi	on (FOV)	$4 \text{mm} \ge 0.1 \text{mm}$	
				magnific	ation	0.32	
				F num	ber	F/9	
			[grating de	finition	0.15 line / um	
				wavelengtl	n range	400nm - 700nm	
⊢+ → → → → → → ↓ 100 mm			Optical path (object)		280mm		
				off axis	angle	8°	
R 200-300					R 1500		
-2.0000, 0.0000 mm	500.00	o	•	20.00	•		
0.0000, 0.0000 mm	•	o	•	۲	٠	۲	
2.0000, 0.0000 mm	•	0	•	٠	•		
Sphere constant pitch					-		

C. Bourgenot, D. J. Robertson, D. Stelter, and S. Eikenberry, "Towards freeform curved blazed gratings using diamond machining," vol. 9912, p. 99123M, 2016. – SPIE 2016

Quadratic variation frequency

-30

-20

-10

0

x position

10

•

•

30

20

Freeform gratings – improved

compactness

- Grating fabricated onto a curved (freeform) surface
- dispersion element the be can integrated with the IFS pupil mirrors
- replace the pupil mirror, grating and camera optics with a single optical element.
- This will significantly reduce the complexity and increase modularity and compactness

First integrated grating imaging spectrograph (IGIS)

- Collaboration between Durham University and University of Florida
- Airborne IFU working at low spectral and spatial resolutions in the visible range
- Design all aluminium
- Diamond machined in its functional position
- 12 slices covering a FOV of 1.1 x 0.3°

slicer dimension (FOV)	$4 \text{mm} \ge 0.1 \text{mm}$		
magnification	0.32		
F number	F/9		
grating definition	0.15 line / um		
wavelength range	400nm - 700nm		
Optical path (object)	280mm		
off axis angle	8°		

e

C. Bourgenot, D. J. Robertson, D. Stelter, and S. Eikenberry, "Towards freeform curved blazed gratings using diamond machining," vol. 9912, p. 99123M, 2016.

Elliptical surface

Tilted Ellipse

- F/6
- Wavelength
- Square FOV
- Off axis
- Magnification

- : 1.2 μm
- :4mm
- :20mm
- : x0.3

OBJ: 0.0000, 2.0000 mm

IMA: 0.000, -0.644 mm OBJ: 0.0000, 0.0000 mm

 $\overline{\mathbf{\cdot}}$

IMA: 0.000, 0.000 mm OBJ: 0.0000, -2.0000 mm

IMA: 0.000, 0.644 mm

OBJ: 2.0000, 0.0000 mm

Elliptical grating diff order 1

Elliptical grating

- F/6
- Wavelength
- Spatial FOV
- Off axis
- Magnification
- Period
- Diffraction order
- R

- : 1.05-1.35 μm
- :4mm
- :20mm
- : x0.3
- :1501/mm
- :1
- : 2250

Elliptical grating diff order 3

Elliptical grating

- F/6
- Wavelength band
- Spatial FOV
- Off axis
- Magnification
- Period
- Diffraction order
- R

- : 1.1-1.3 μm
 - :4mm
 - :20mm
 - : x0.3
 - : 150 l /mm
 - :1
 - : 6750

=> Higher diffraction order possible at the cost of reduced wavelength bandwidth.

CEOI Project description

- Investigate technical feasibility, performance and limitations of metallic freeform blazed gratings produced by diamond machining.
 - Materials comparison :
 - ▶ RSA 6061 versus RSA 443 with Nickel plating
 - Same grating design (pitch/blazed angle freeform shape)
- Develop the software tool for the machining of :
 - Multiblaze structure
 - Variable frequency grating
- Determine the optimal cutting parameters
 - Feedrate & tool wear
- Grating Characterisation in term of :
 - Spatial and spectral resolution
 - Surface form error
 - Roughness
 - efficiency

Hyperspectral imager for Earth

CEOI Project description

FOV object (along the spatial direction)	+/-2mm		
FOV image (along the spectral direction)	+/-3.5mm		
Magnification	-1		
Input F number	F/6.6 min		
Distance object	300mm		
Grating diameter	Ф50mm		
Optimisation Wavelength	[471nm,588nm,692nm]		
number of line / mm	100		
Diffraction order	1		
incidence angle at 588nm - centre of the grating	2.95°		
shape	Ellipsoid		

- Design of a 50mm grating, optimised for some of the strong lines of a Neon lamp.
- Theoretical R : 4500
- Elliptical surface composed of a nominal spherical surface (1mm) + astigmatic surface (1.5micron)

Freeform SAG (mm) Freeform SAG at best fit sphere (micron)

conclusion

- Diamond machined freeform gratings can complement alternative technologies such as ion beam etching with holographic masks and offer a full control on the blaze structure. They can easily be implemented with :
 - ✓ multi-blaze (broadening of the wavelength bandwidth)
 - ✓ variable frequency (further improvement in the spectral resolution) on high sag, large slope surfaces.
- A new design of Integral field spectrometer : integrate freeform gratings onto the pupil mirrors, significantly reducing the complexity, at the cost of a FOV and spectral range set by the design parameters.
- Work in progress at Durham University for the development of novel machining strategies to produce and improves metallic diamond machined gratings.