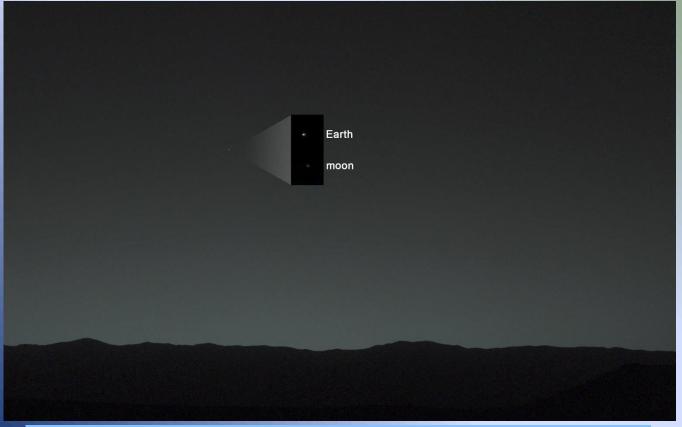

Il clima dalla Terra agli esopianeti



Gianluca Lentini, Poliedra – Politecnico di Milano

I Cieli di Brera, 21 settembre 2016, Istituto Lombardo

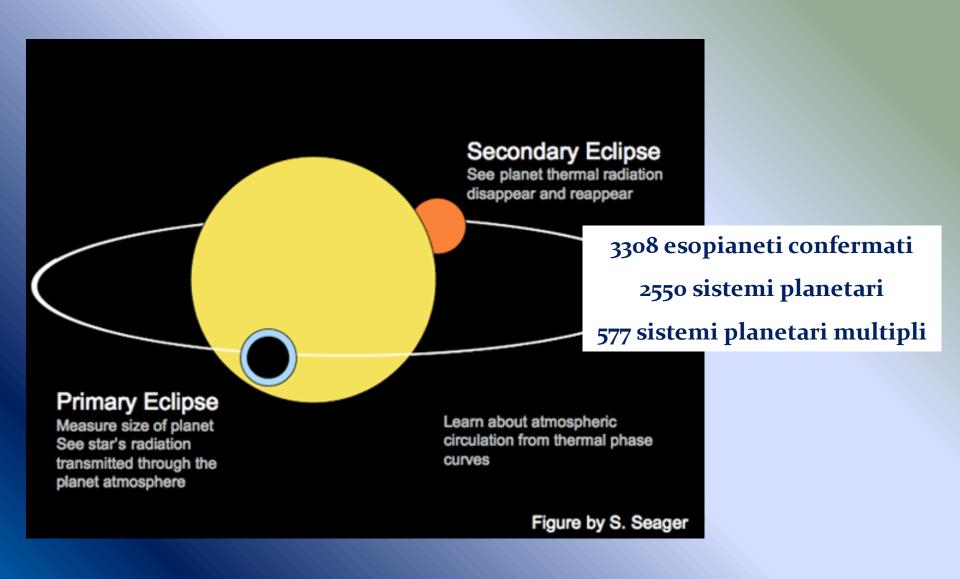
La Terra e le sue caratteristiche come pianeta


```
Composizione = 47% (O), Si (28%), Al (8%), Fe (5%), Ca (4%), Na-K-Mg (2%) in massa nella crosta

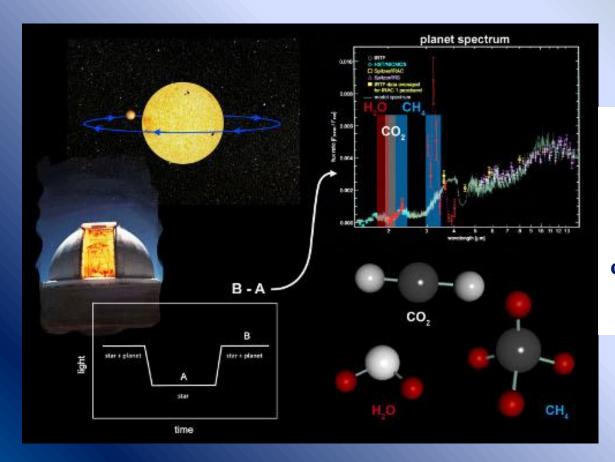

Temperatura = 15^{\circ} C (da -89.2 a +56.7^{\circ} C)

Inclinazione Asse = 23.4^{\circ}

Raggio = 6378 km (equatore), 6356 km (poli)


Massa = 5.97 x 10^{\circ}24 kg
```

C'è vita sulla Terra?


E come facciamo a saperlo?

Gli esopianeti e la ricerca di vita

Missione Kepler e il metodo del transito – *firme* atmosferiche

Atmosfere Esoplanetarie

Ogni componente

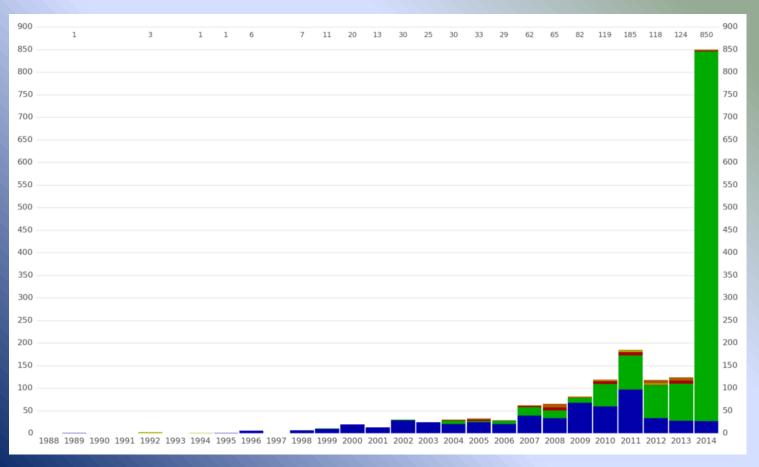
dell'atmosfera assorbe una

sezione specifica della luce

della stella: lascia la sua firma

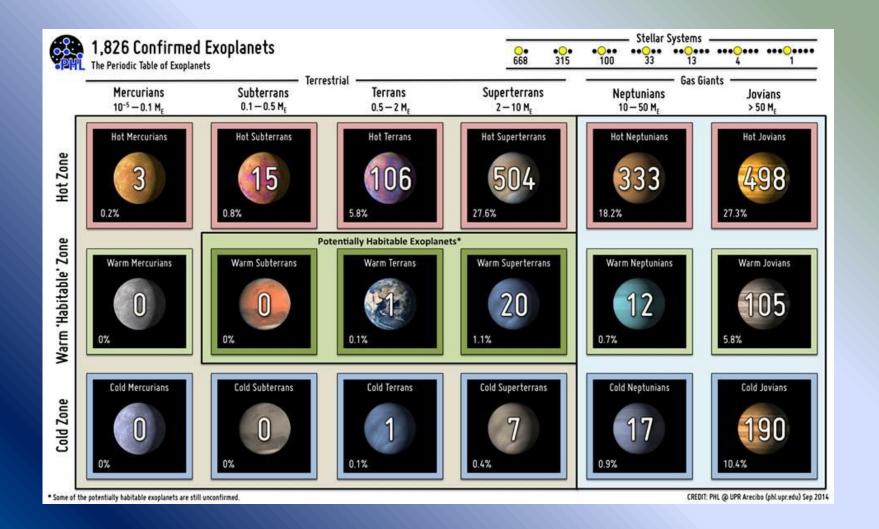
leggibile!

Spettrografia atmosferica e segnali dai componenti

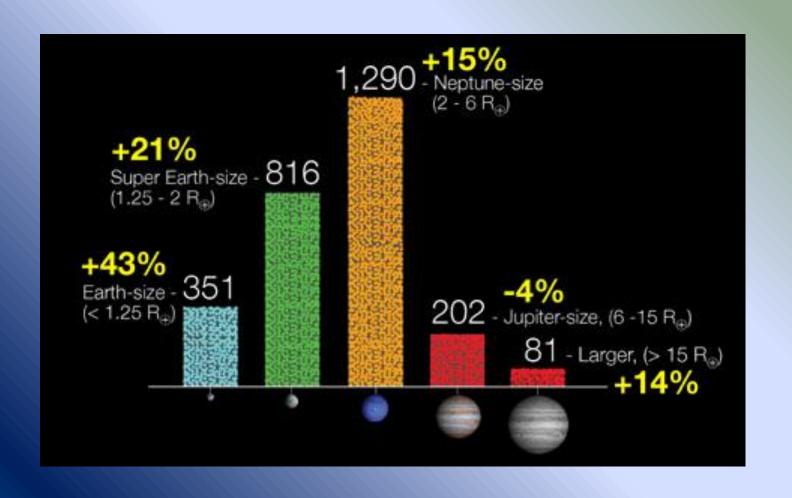

Da 70 Ophiuchi in poi: gli esopianeti

- William Herschel: «un compagno invisibile» nel sistema binario di 70 Ophiuchi (fine 18° sec).
- •<u>1992</u>: Conferma di un pianeta intorno a una pulsar PSR 1257+12.
- •<u>1995</u>: scoperta di «Bellerofonte», primo pianeta in orbita a una stella di sequenza principale 51 Pegasi.
- Oggi: oltre 2000 esopianeti confermati!

Metodi di individuazione per esopianeti


- •Immagine Diretta: individuazione diretta dell'esopianeta.
- •<u>Velocità radiale</u>: spettroscopia Doppler, spostamento verso il rosso o il blu.
- •<u>Transito</u>: passaggio del pianeta davanti al disco stellare.
- •Microlensing: effetto di microlente gravitazionale causata dal pianeta.
- •<u>Variazioni temporali per transito</u>: un secondo esopianeta perturba il transito del primo.

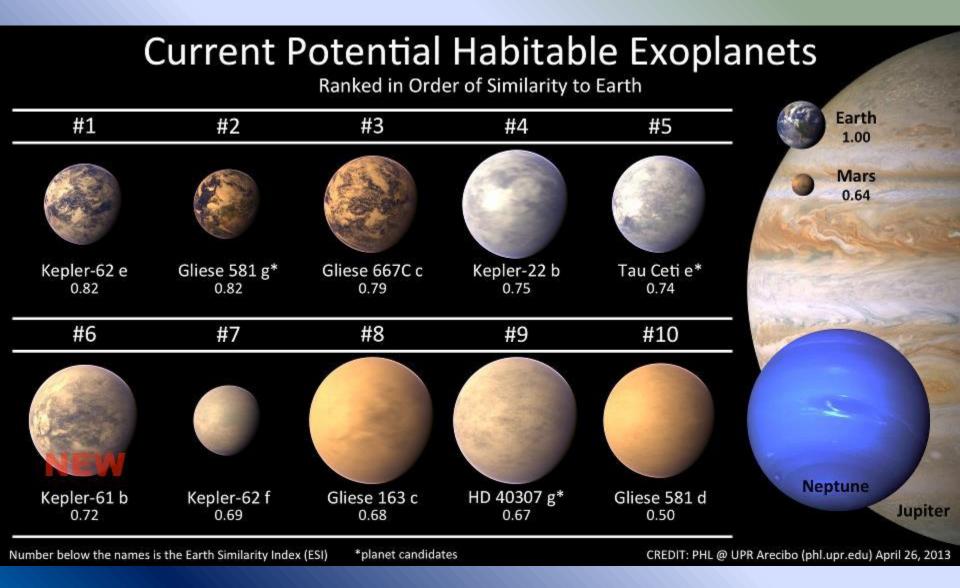
Metodi di individuazione per esopianeti



Transito (verde)
Velocità radiale (blu)
Microlensing (ocra)
Immagine diretta (rosso)

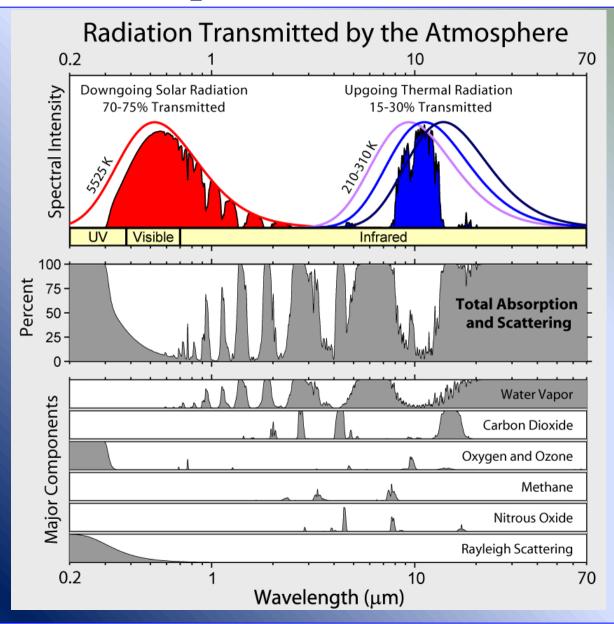
ESOPIANETI: ben di più di una seconda Terra!

ESOPIANETI: ben di più di una seconda Terra!


ESOPIANETI: sistemi esoplanetari

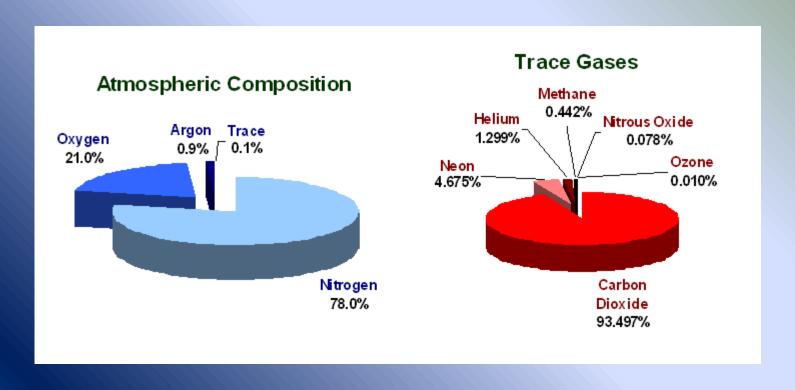
Circa 2000 esopianeti; 1210 sistemi esoplanetari (almeno 2 pianeti); 480 sistemi planetari multipli

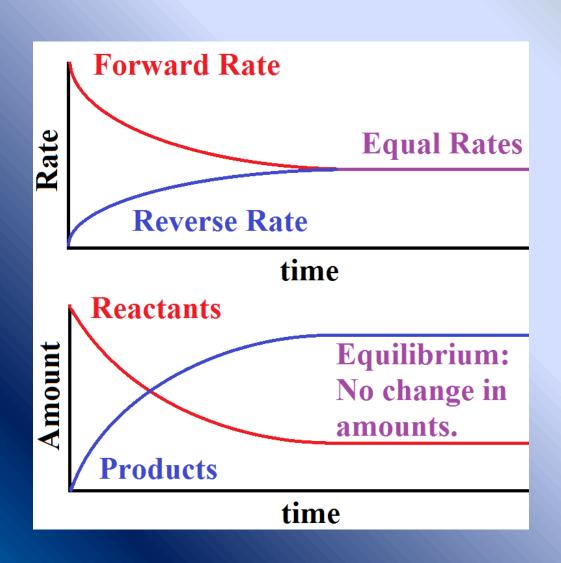
[Sole: 8 pianeti]


- 1. HD 10180: 7 (+2) pianeti
- 2. Kepler-90: 7 pianeti
- 3. HD 40307: 6 pianeti
- 4. Kepler-11: 6 pianeti
- 5. Gliese 667: 5 (+2) pianeti
- 6. 55 Cancri: 5 pianeti

Sistemi esoplanetari potenzialmente abitabili

Earth Similarity Index: raggio, velocità di fuga, densità, temperatura

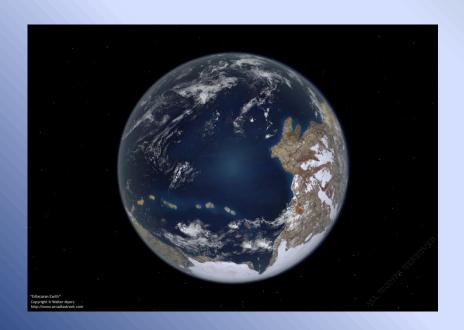

E se l'esopianeta fosse la Terra?


Spettrografia atmosferica terrestre e segnali dai componenti

L'atmosfera della Terra – la terza atmosfera

Uno sguardo all'atmosfera: la via privilegiata per comprendere un pianeta e la sua storia

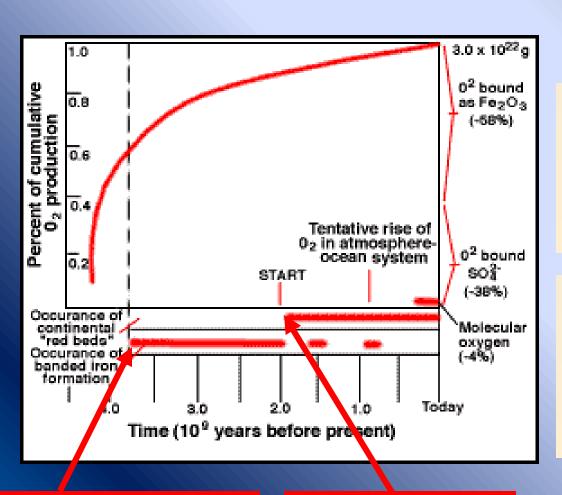
Equilibrio e disequilibrio chimico



La vita può essere definita, fisicamente, come una temporanea e localizzata diminuzione dell'entropia di un sistema (Schrödinger)

Reazioni non biologiche (o irreversibili) conducono all'equilibrio chimico

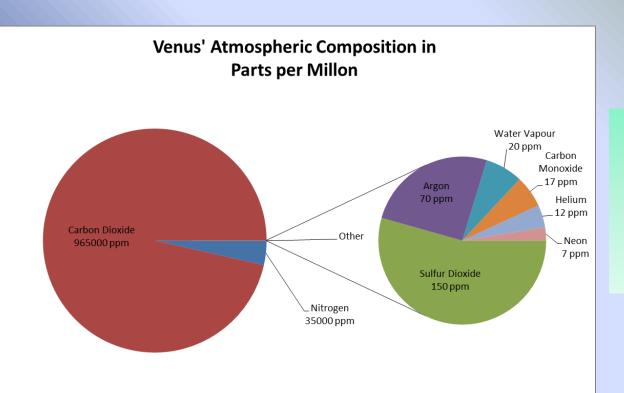
L'atmosfera della Terra – la seconda atmosfera


La seconda atmosfera: un equilibrio chimico scardinato dalla vita

80% N2; 18% CO2; 1% H2O; 1% H2

La coevoluzione bio-geofisica

La biosfera terrestre, la terra solida e l'O₂ atmosferico


La presenza di rocce con minerali di Ferro ossidati (es. ematite: Fe₂O₃) è indice della presenza di Ossigeno nell'atmosfera.

L'accumulo di Ossigeno nell'atmosfera comincia 3.8 Bya (rocce con bande di Ferro); a partire da 2 Bya la quantità di O₂ è tale da permettere la formazione dei Red Beds.

Bande di Ferro: 3.8 Bya

Red Beds: 2 Bya

Un gemello parecchio diverso: Venere

Composizione = 96.5% CO₂, 3.4% N₂, 0.1% SO₂

Pressione Sup. = 92 volte quella terrestre

Temperatura = circa 470° C

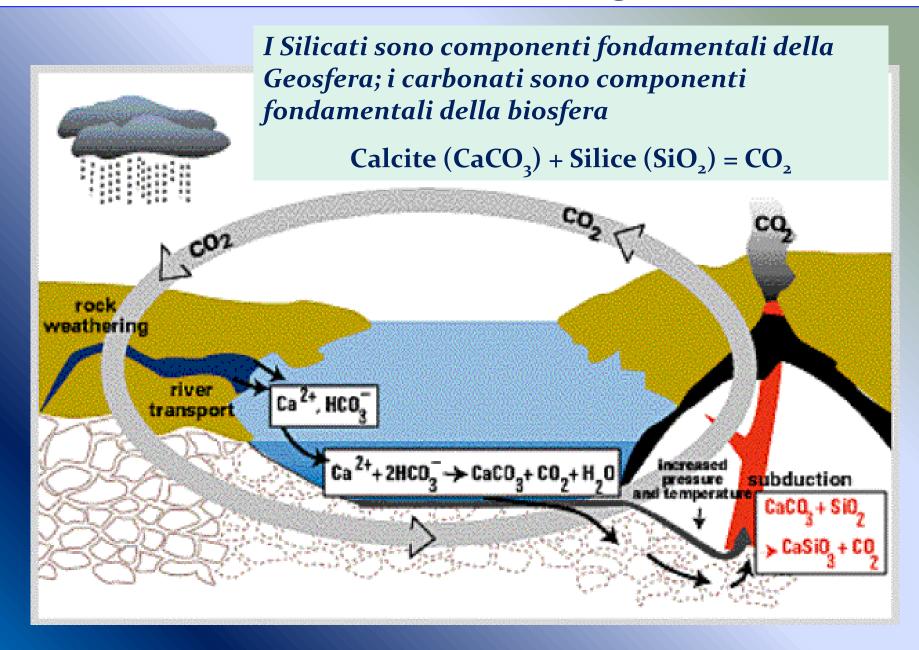
Il singolar globo di Marte

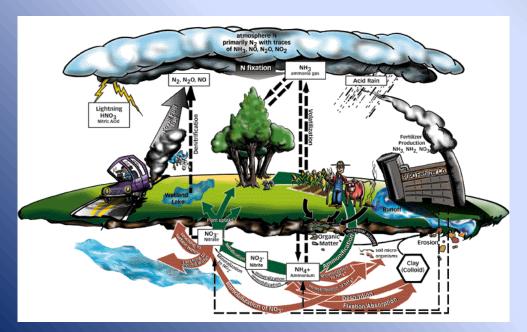
Caratteristiche di Marte

Composizione = 95% CO2, 3%N2, 1.6% Ar, 0.3% O2

Pressione Sup. = 0.6% Terra

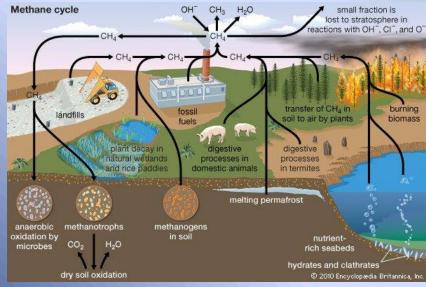
Temperatura = tra -140 ° C a +30 ° C


Stagioni = da 150 a 190 giorni

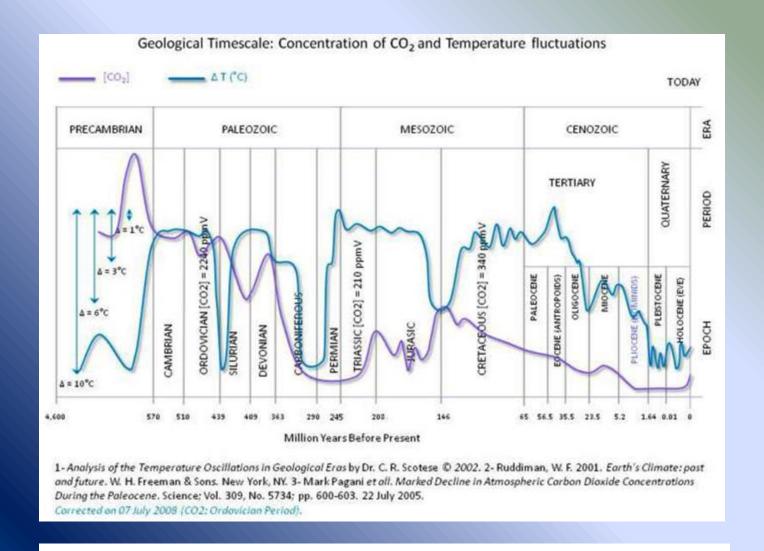


Stagioni "di tipo terrestre", lunghe il doppio

La CO2 e il suo ciclo biogeofisico



I cicli dell'azoto e del metano



Passaggi in atmosfera, geosfera e ruolo fondamentale della biosfera...

...e, dalla rivoluzione industriale, dell'antroposfera.

La vita come componente essenziale della Terra

Dopo l'inizio della vita, la temperatura planetaria ha sempre permesso l'esistenza di acqua liquida in superficie

L'atmosfera: è una questione di "forza"

Leggi Dinamiche e Termodinamiche

L'atmosfera di un pianeta è la cassa di risonanza dei cambiamenti che avvengono in tutte le unità geofisiche

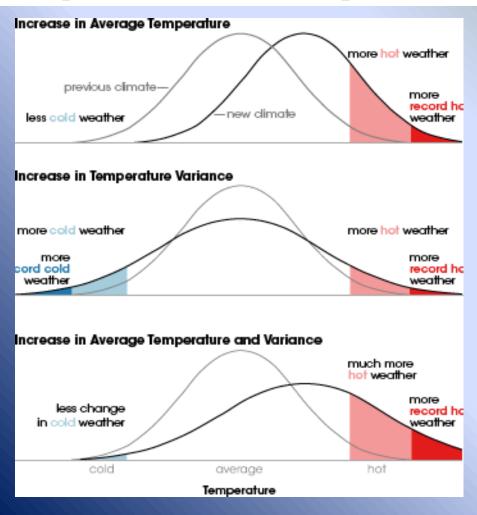
Masse reciproche delle unità geofisiche sulla Terra

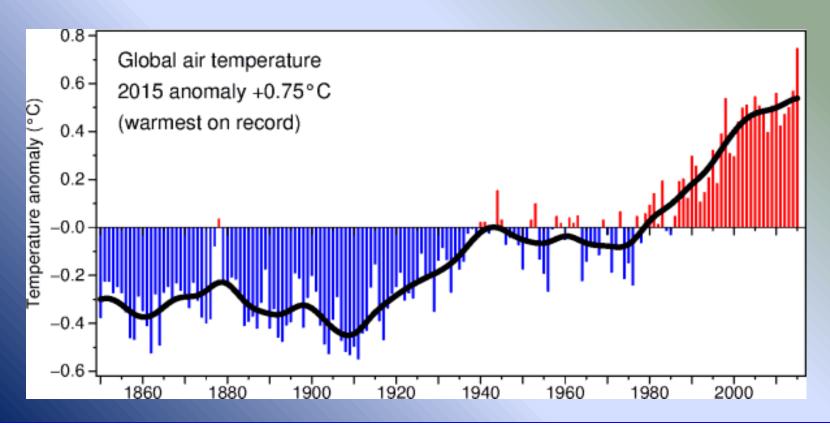
Geosfera: 5.9 * 10^24 kg

Idrosfera: 1.4 * 10^21 kg

Atmosfera: 5.1 * 10^18 kg

Cosa sta succedendo alla Terra?

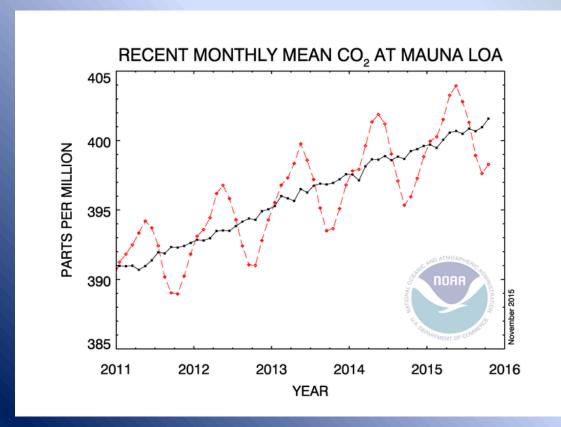



TERMINOLOGIA

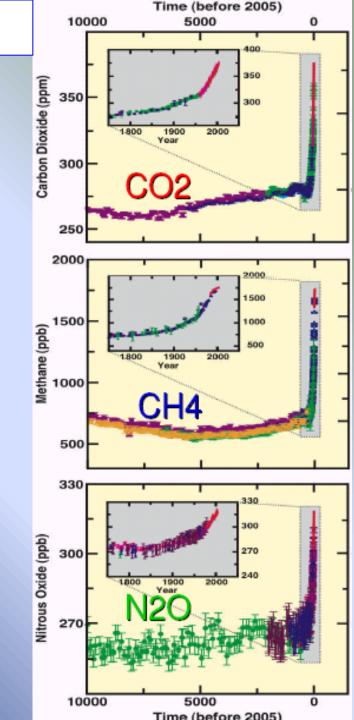
CAMBIAMENTO CLIMATICO?

Variazione sistematica della distribuzione statistica di variabili meteorologiche in intervalli di tempo di diversi decenni o superiori (30 anni, WMO)

Il Riscaldamento Globale

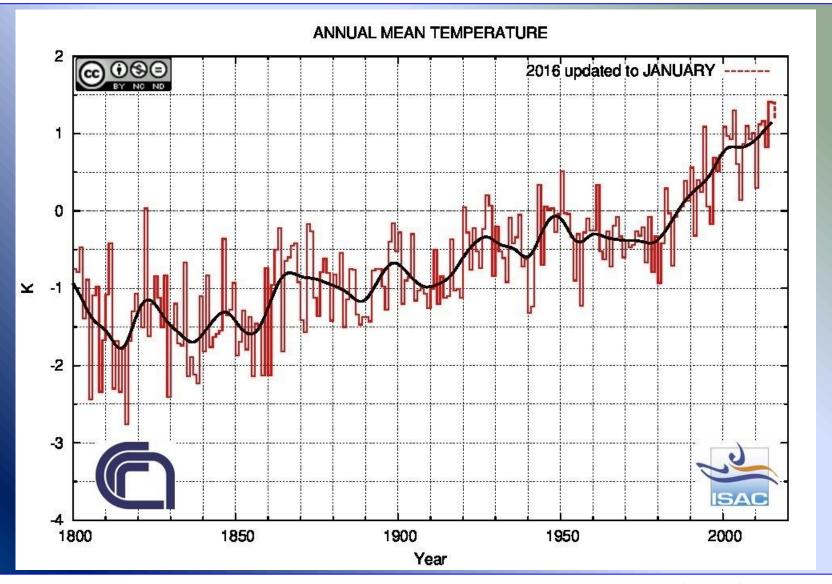


Anomalie di Temperatura (°C) rispetto alla media 1971-2000


da Climatic Research Unit, University of East Anglia, http://www.cru.uea.ac.uk/

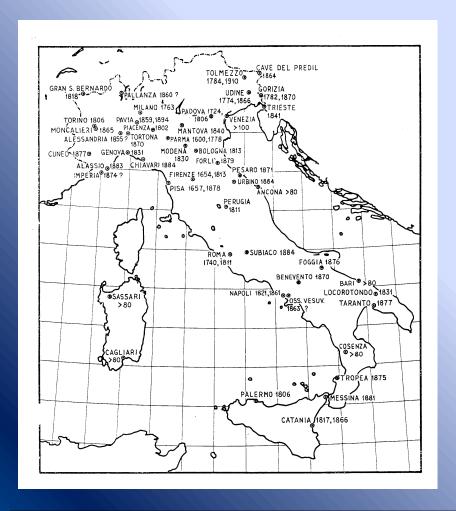
ATTUALE MANIFESTAZIONE del cambiamento climatico sulla superficie terrestre, alla luce dei dati osservativi

Il ruolo dei gas clima-alteranti


Forte aumento nelle concentrazioni dei gas serra, attribuito, in modo pressoché unanime, alle attività umane

ATTRIBUZIONE DEL CAMBIAMENTO CLIMATICO

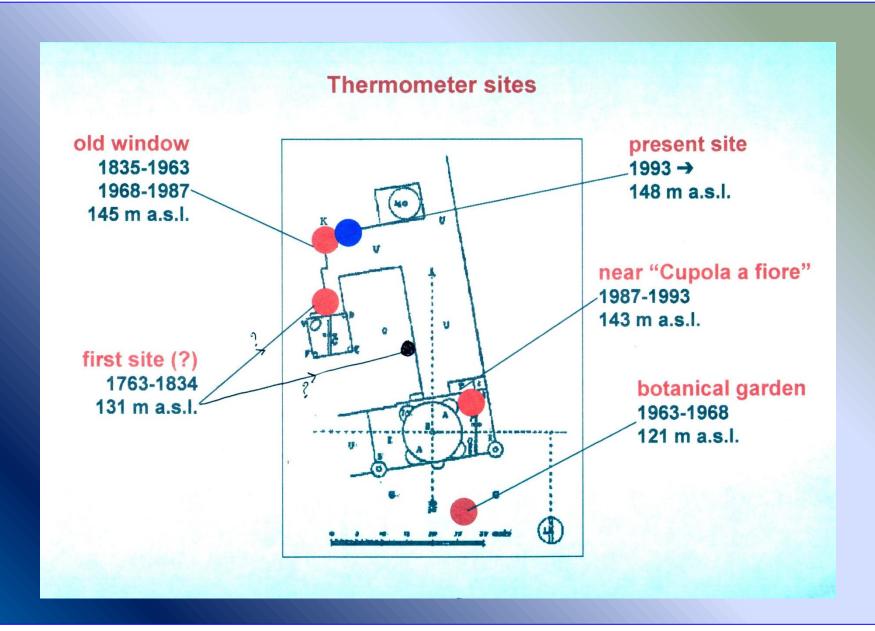
- Il riscaldamento di terre emerse e superficie degli oceani è inequivocabile. Molti degli impatti ad esso associati non hanno precedenti per intensità e per tasso.
- C'è un'evidente influenza umana sul riscaldamento globale.
- E' estremamente probabile (probabilità >99%) che
 l'influenza umana sia la causa dominante del riscaldamento globale osservato dopo il 1950.
- Quanto più attenderemo a mitigare le emissioni, tanto più severe saranno le conseguenze.


Il Riscaldamento Globale in Italia

Anomalie di T medie annuali rispetto al 1971-2000 (in K)

http://www.isac.cnr.it/~climstor/climate_news.html

Storie di variabili meteorologiche



Stazioni secolari italiane

Annali Meteorologici

Year.	January.			February.			March.			April.			May.			June.		
	Max.	Min.	Avr.	Max.	Min.	Avr.	Max.	Min.	Avr.	Max.	Min.	Avr.	Max.	Min.	Avr.	Max.	Min.	Avr.
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1888 1884 1885 1884 1885 1884 1885 1888	75 84 78 79 80 80 80 71 79 78 74 89 82 71 78 73 74 80 84 79 75	24 19 12 13 2 18 0 31 14 8 3 15 6 6 18 3 5 2 2 12 13 2 14 12 13 14 14 15 15 15 15 15 16 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	45.93 41.70 44.58 40.98 45.00 46.50 37.43 51.16 45.64 43.62 46.28 57.23 37.96 46.57 38.04 39.35 40.51 40.84 46.32	85 74 93 81 82 82 78 84 87 666 78 77 781 82 79 78 84 79 81	28 19 27 22 18 28 24 10 11 15 16 31 5 17 15 17 14 28 17	50.47 49.83 53.57 49.60 54.24 53.50 43.63 52.44 53.18 49.74 49.35 50.21 47.58 55.71 45.90 46.85 45.64 50.15 50.42 50.42 50.08	96 89 95 87 86 84 92 86 84 88 92 86 86 84 89 90 87 91 85	33 25 35 30 30 35 38 19 19 14 26 28 26 26 30 24 29 24 35	57.46 55.84 59.08 54.74 61.47 57.39 67.76 34.24 61.84 57.71 33.76 58.52 58.32 61.90 57.41 58.97 54.61 60.94 60.86 51.78 57.20	98 92 90 101 90 94 91 95 98 98 94 97 96 95 94 95 93 101 94 94	36 36 35 32 37 31 34 47 34 35 40 31 25 32 32 32 42 42 43 43 44	67.20 63.98 65.17 69.04 64.88 68.83 64.67 69.06 69.36 63.70 67.18 66.84 68.16 62.98 61.56 67.18 66.83 67.78 66.11	101 101 98 102 102 99 99 107 101 98 103 93 93 93 93 93 98 98	555 4559 43; 422 444 551 550 466 488 522 444 455 500 467 488 444 445 511 43	80.03 79.37 72.82 73.12 74.56 73.50 79.92 77.10 76.35 72.91 73.26 78.95 78.61 73.17 74.08 77.35 69.82 71.09 81.14 74.60 97.43 72.13	107 98 98 102 102 100 104 105 104 102 101 106 103 105 100 107 112 107 104	577 555 633 666 558 666 550 558 488 552 660 64 558	76.55 78.06 82.41 78.00 81.50 87.62 81.18 80.20 80.17 80.50 82.72 82.34 84.81 78.14 82.05 84.63 81.14
	July.			August.			September.			October.		November.		December.				
Year.	Max.	Min.	Avr.	Max.	Min.	Avr.	Max.	Min.	Avr.	Max.	Min.	Avr.	Max.	Min.	Avr.	Max.	Min.	Avr.
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1880 1881 1882 1883 1884 1886 1886	102 110 103	65 63 72 65 64 73 59 63 56 50 65 65 68 68 68	87.50 74.53 80.99 87.19 82.95 86.85 88.42 80.31 84.43 82.89 88.79 83.09 86.65 83.89 84.23 82.76 83.44 86.21 86.52 86.47	103 105 105	64 70 70 68 60 70 53 66 63 56 57 47 64 58 38 73 65 65	88.10 83.26 81.12 84.85 85.25 83.09 84.31 81.87 83.35 83.48 83.90 79.44 78.91 78.91 86.13 78.46 80.48 84.05 84.28 86.72	107 110 98 90 102 107 103 100 101 100 91 101 98 98 90 98 101 95 100	49 43 61 50 47 50 50 48 48 49 41 51 43 63 56 51 45	79.12 71.81 75.87 74.85 78.83 81.60 75.96 76.10 77.59 72.94 75.11 74.85 80.52 72.51 73.16 81.68 77.33 76.20 76.66	96 102 96 97 101 96 96 91 98 93 91 88 96 95 94 89 92	40 32 43 38 33 34 40 41 42 30 27 32 32 40 42 35 42 35 42 35 34 35 35 40 41 42 42 40 41 42 42 40 42 40 40 40 40 40 40 40 40 40 40 40 40 40	66.31 57.68 68.80 65.47 65.69 70.00 67.70 69.12 68.61 66.87 66.82 64.78 71.19 69.26 66.83 62.37 61.189 67.18 62.59	87 102 98 81 82 86 97 92 82 77 83 87 78 86 88 87 80 88 85 83	32 28 27 23 18 31 27 23 29 15 15 15 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	38.30 50.68 49.62 51.84 52.01 57.02 60.01 56.46 50.80 49.99 54.88 57.47 43.28 56.60 52.76 55.69 56.84 53.03 52.78	90 84 80 80 80 73 76 80 74 71 74 84 82 76 78 82 75 76 73	24 12 7 7 13 20 31 28 9 9 15 8 0 2 2 21 17 0 10 15 8 8 12 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	47.74 48.96 41.04 44.72 42.15 48.85 52.78 39.64 47.55 39.64 49.86 34.06 31.13 44.31 47.28 46.98 51.10 45.80 42.26 52.13

La serie meteorologica di Milano Brera

253 anni nel 2016!

Il 1816, l'anno senza estate

Nebbia e pioggia persistente negli Stati Uniti

Nevicate in USA, Canada, Europa Occidentale fino a luglio

Episodi di neve rossa in Italia, neve marrone in Ungheria

Temperature di diversi gradi sotto la media, con improvvisi aumenti

Perturbazione dei monsoni; alluvioni in Asia Orientale

Alluvioni in Europa

Avanzamento dei ghiacciai: distruzione di dighe

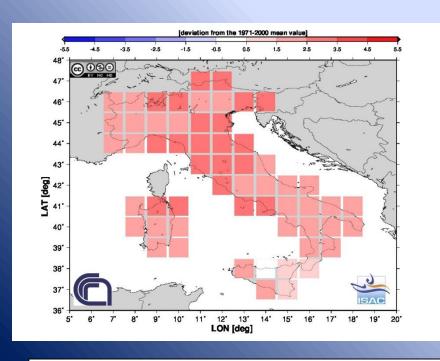
Carestia del grano, del frumento, delle patate (Irlanda)

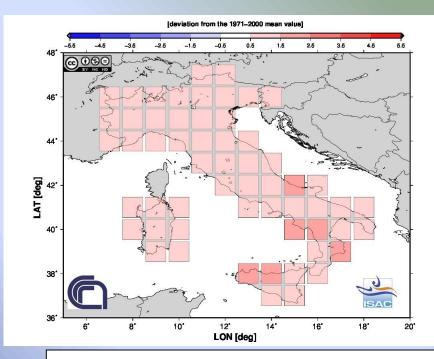

Penuria di riso (Cina)

Rivolte per il pane in Gran Bretagna, Francia, Svizzera

Epidemie di colera e di tifo

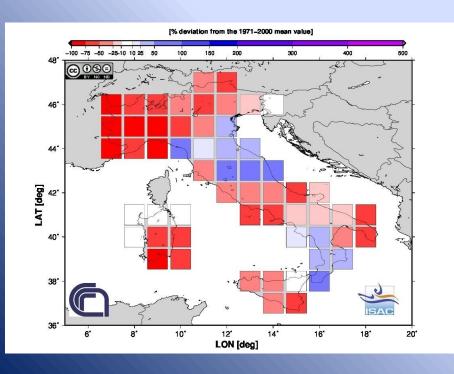
Moria dei cavalli: penuria di mezzi di trasporto

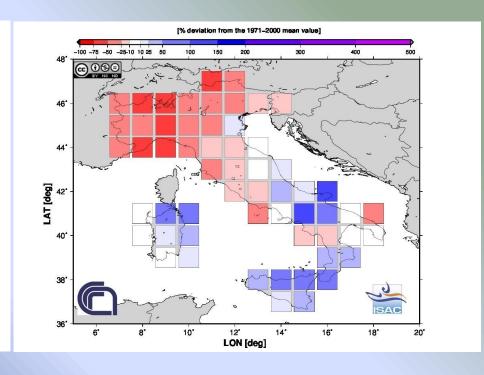

Il Riscaldamento Globale in Italia


Anomalie di P medie annuali rispetto al 1971-2000 (in %)

http://www.isac.cnr.it/~climstor/climate_news.html

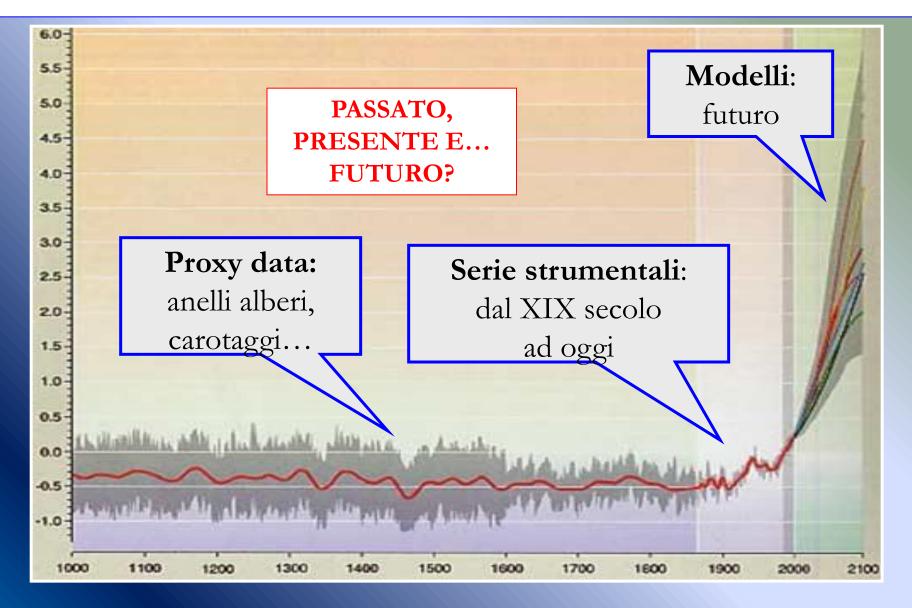
Riscaldamento globale, anno 2015




Anomalie TEMP, Estate 2015

Anomalie TEMP, Autunno 2015

Riscaldamento globale, anno 2015-2016



Anomalie PREC, gennaio 2016

Anomalie PREC, autunno 2015

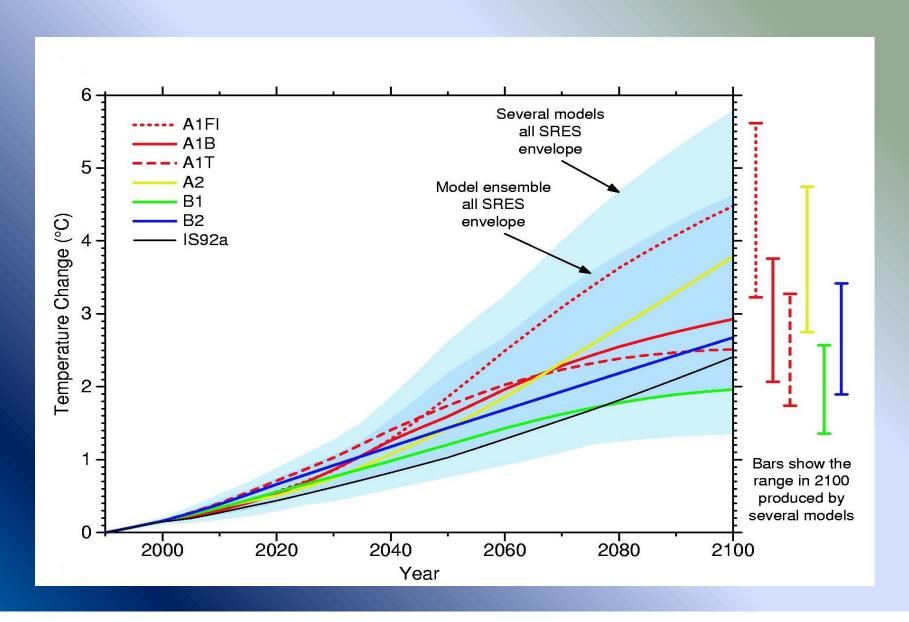
IL SISTEMA CLIMA: I DATI

Incertezza per i dati di proxy; massima incertezza, naturalmente, per le proiezioni future

PRESENTE E FUTURO

PRESENTE:

INNALZAMENTO DELLE TEMPERATURE CAMBIAMENTO DI DISTRIBUZIONE DELLE PRECIPITAZIONI


E IL FUTURO?

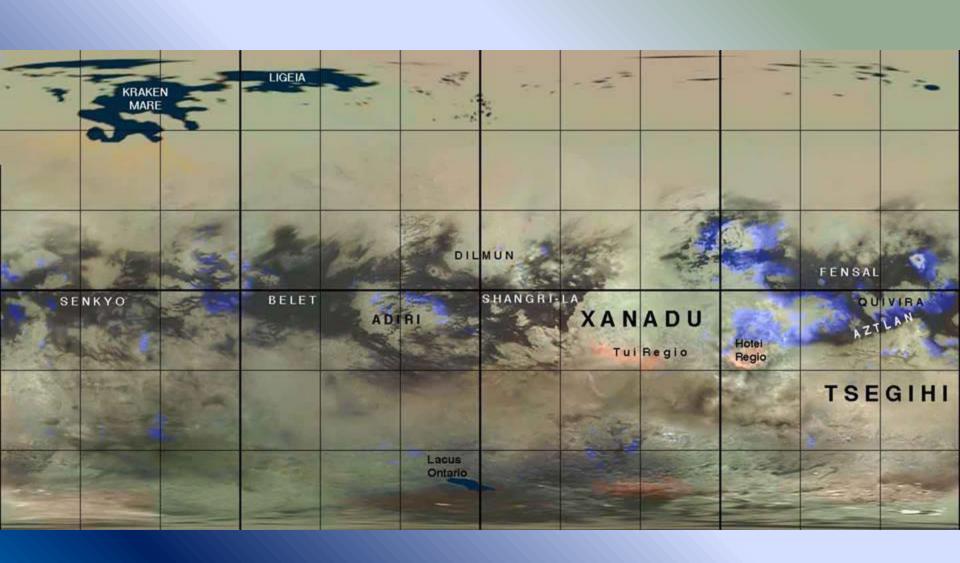
"Fare **previsioni** è molto difficile, specialmente riguardo il futuro."

Niels Bohr, fisico danese (1885 - 1962)

I MODELLI CLIMATICI: le PROIEZIONI

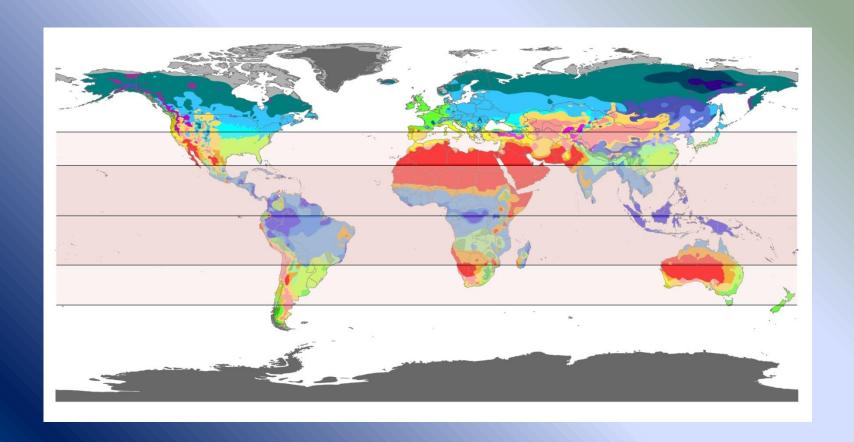
Le Proiezioni sono, PER DEFINIZIONE, affette da grandi incertezze

Le Strategie d'Adattamento: elementi chiave


- 1. Quadro conoscitivo: com'è l'ambiente su cui interveniamo?
- 2. Scenario di riferimento: come sarà il futuro?
- 3. Obiettivi e indicatori: cosa vogliamo fare?
- 4. Azioni/alternative: come intendiamo farlo?
- 5. Stima degli effetti delle azioni/alternative
- 6. Confronto e scelta tra alternative
- 7. Attuazione e monitoraggio: come controlleremo?

Coinvolgimento e partecipazione dei diversi soggetti Realtà locali interessate

Le Strategie di Mitigazione: la COP21


The Paris Agreement	Grade	What happened?	Commentary
Anchoring emission reduction commitments		Parties must make successive emission reduction commitments and "shall pursue domestic mitigation measures".	Legally binding requirement to produce on-going emission reduction commitment.
Mitigation Long- term goal		"A balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century." "Well below 2 °Cand to pursue efforts to limit the temperature increase to 1.5 °C."	Implies moving to net zero emissions from energy by 2050- 60. Strengthening of overall temperature goal requires faster short term cuts.
Ambition mechanism		Clear 5 year cycles for raising ambition linked to a global stock take on progress towards the long term goal. Starting with a review of current climate action contributions by 2018, to be resubmitted by 2020.	There is a near-term political moment in sight, with a regular process of 5 year cycles where countries come forward with contributions to put us on track to achieve the below 2C or 1.5C limit on warming.

Una gita al lago?

Il raffreddamento globale su Titano...

Grazie per l'attenzione

gianluca.lentini@polimi.it